Skip to main content

Advertisement

Log in

Advanced High-Temperature Structural Materials for Aerospace and Power Sectors: A Critical Review

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Advanced high-temperature structural materials are expected to play an important role in realizing the aspirations related to the next-generation aerospace propulsion devices, thermal protection system of reusable launch vehicles and thermal/nuclear power reactors. Despite considerable amount of research conducted for developing new and more efficient high-temperature structural materials, the advancement is inadequate and warrants continued efforts to address several unresolved issues concerning synthesis and processing of new materials, related characterization and testing to evaluate and ensure desired performance, durability, reproducibility and reliability in simulated experiments and real-life condition and finally, upscaling the operation for large-scale commercially viable production. In this article, an attempt has been made to review the latest status and trend in developing high-temperature structural materials for aerospace and thermal/nuclear sectors and highlight the challenges associated with development and processing of such advanced structural materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ellerby D, Venkatapathy E, Stackpoole M, and Chinnapongse R, Woven Thermal Protection System Based Heat-Shield for Extreme Entry Environments Technology (HEEET) (2013).

  2. Barcena J, Florez S, Perez B, Pinaud G, Bouilly JM, Fischer W P, Montbrun A, Descomps M, Zuber C, Rotaermel W, Hald I H, Portela P, Mergia K, Triantou K, Vekinis G, Stefan A, Ban C, Ionescu G, Bernard D, Leroy V, Massuti B, and Herdrich G H, Novel Hybrid Ablative/Ceramic Development for Re-entry in Planetary Atmospheric Thermal Protection: Interfacial Adhesive Selection and Test Verification Plan. AIAA Aviat 2014-19th AIAA Int Sp Planes Hypersonic Syst Technol Conf (2014), p 1.

  3. Dicarlo J A, in Ceram Matrix Compos Mater Model Technol, (eds) Bansal N P, and Lamon J, Wiley, Hoboken (2014), p 217.

    Google Scholar 

  4. Padture N P, Nat Mater 15 (2016) 804.

    Google Scholar 

  5. Yvon P, and Carré F, J Nucl Mater 385 (2009) 217.

    Google Scholar 

  6. Katoh Y, Snead L L, Szlufarska I, and Weber W J, Curr Opin Solid State Mater Sci 16 (2012) 143.

    Google Scholar 

  7. Fahrenholtz W G, and Hilmas G E, Scr Mater 129 (2017) 94.

    Google Scholar 

  8. Mohapatra S, Mishra D K, and Singh S K, Powder Technol 237 (2013) 41.

    Google Scholar 

  9. Yeh C L, and Liu E W, J Alloys Compd 415 (2006) 66.

    Google Scholar 

  10. Patil K C, Bull Mater Sci 16 (1993) 533.

    Google Scholar 

  11. Chaira D, Mishra B K, and Sangal S, Mater Sci Eng A 460–461 (2007) 111.

    Google Scholar 

  12. Chaira D, Mishra B K, and Sangal S, Powder Technol 191 (2009) 149.

    Google Scholar 

  13. Lonergan J M, Fahrenholtz W G, and Hilmas G E. J Am Ceram Soc 98 (2015) 2344.

    Google Scholar 

  14. Kagawa Y, Guo S, in Ceram Matrix Compos Mater Model Technol, (eds) Bansal N P, and Lamon J, Wiley, Hoboken (2014); p 273.

    Google Scholar 

  15. Zapata-solvas E, Jayaseelan DD, Lin HT, Brown P, and Lee WE, J Eur Ceram Soc 33 (2013) 1373.

    Google Scholar 

  16. Ariharan S, Sengupta P, Nisar A, Agnihotri A, Balaji N, Aruna S T, and Balani K, J Therm Spray Technol 26 (2017) 417–431.

    Google Scholar 

  17. Anselmi-Tamburini U, Kodera Y, Gasch M, Unuvar C, Munir ZA, Ohyanagi M, and Johnson S M, J Mater Sci 41 (2006) 3097.

    Google Scholar 

  18. Balani K, Bakshi S R, Chen Y, Laha T, and Agarwal A, J Nanosci Nanotechnol 7 (2007) 3553.

    Google Scholar 

  19. Balani K, Harimkar S P, Keshri A, Chen Y, Dahotre N B, and Agarwal A, Acta Mater 56 (2008) 5984.

    Google Scholar 

  20. Laha T, Kuchibhatla S, Seal S, Li W, and Agarwal A, Acta Mater 55 (2007) 1059.

    Google Scholar 

  21. Xia Z, Riester L, Curtin W A, Li H, Sheldon B W, Liang J, Chang B, and Xu J M, Acta Mater 52 (2004) 931.

    Google Scholar 

  22. Garvie R C, Hannink RH, and Pascoe R T, Nature 258 (1975) 703.

    Google Scholar 

  23. Subbarao E C, Maiti H S, and Srivastava K K, Phys Status Solidi 21 (1974) 9.

    Google Scholar 

  24. Bansal G K, and Heuer A H, Acta Metall 22 (1974) 409–417.

    Google Scholar 

  25. Deville S, Guénin G, and Chevalier J, Acta Mater 52 (2004) 5697.

    Google Scholar 

  26. Gogotsi G A, Lomonova E E, and Pejchev V G, J Eur Ceram Soc 11 (1993) 123.

    Google Scholar 

  27. Wolten G M, J Am Ceram Soc 46 (1963) 418.

    Google Scholar 

  28. Cesari F, Esposito L, Furgiuele F M, Maletta C, and Tucci A. Ceram Int 32 (2006) 249.

    Google Scholar 

  29. Ran S, Winnubst A J A, Koster H, de Veen P J, and Blank D H A. J Eur Ceram Soc 27 (2007) 683.

    Google Scholar 

  30. Almeida P J, Silva C L, Alves J L, Silva F S, Martins R C, and Sampaio-Fernandes J, Rev Port Estomatol Med Dentária e Cir Maxilofac 57 (2016) 197.

    Google Scholar 

  31. Zhang Y L, Jin X J, Rong Y H, Hsu T Y, Jiang D Y, and Shi J L, Acta Mater 54 (2006) 1289.

    Google Scholar 

  32. Wang Y, Bai Y, Yuan T, Chen H Y, Kang Y X, Shi W J, Song X L, and Li B Q, Surf Coat Technol 319 (2017) 95.

    Google Scholar 

  33. Xia J, Yang L, Wu R T, Zhou Y C, Zhang L, Yin B B, and Wei Y G, Surf Coat Technol 307 (2016) 534.

    Google Scholar 

  34. Porter D L, and Heuer A H, J Am Ceram Soc 60 (1977) 183–4.

    Google Scholar 

  35. Gupta T K, Bechtold J H, Kuznicki R C, Cadoff L H, and Rossing B R, J Mater Sci 12 (1977) 2421.

    Google Scholar 

  36. Becher P F, Acta Metall 34 (1986) 1885.

    Google Scholar 

  37. Maiti H S, Gokhale K V G K, and Subbarao E C, J Am Ceram Soc 55 (1972) 317.

    Google Scholar 

  38. Patil R N, and Subbarao E C, J Appl Crystallogr 2 (1969) 281.

    Google Scholar 

  39. Patil R N, and Subbarao E C, Acta Crystallogr Sect A 26 (1970) 535–542.

    Google Scholar 

  40. Ramani S V, Mohapatra S K, and Gokhale K V G K, Trans Indian Ceram Soc 30 (1971) 33.

    Google Scholar 

  41. Kelly J R, and Denry I, Dent Mater 24 (2008) 289.

    Google Scholar 

  42. Burger W, Richter H G, Piconi C, Vatteroni R, Cittadini A, and Boccalari M, J Mater Sci Mater Med 8 (1997) 113–8.

    Google Scholar 

  43. Turon-Vinas M, and Anglada M, Dent Mater 34 (2018) 365.

    Google Scholar 

  44. Denkena B, Breidenstein B, Busemann S, and Lehr C M, Proc CIRP 65 (2017) 248.

    Google Scholar 

  45. Abd El-Ghany O S, and Sherief A H, Future Dent J 2 (2016) 55.

    Google Scholar 

  46. Bidra A S, Tischler M, and Patch C, J Prosthet Dent 119 (2018) 220.

    Google Scholar 

  47. Rajabbeigi N, Elyassi B, Khodadadi A, Mohajerzadeh S S, and Sahimi M, Sens Actuators B Chem 100 (2004) 139.

    Google Scholar 

  48. Prabhakaran K, Beigh M O, Lakra J, Gokhale N M, and Sharma S C, J Mater Process Technol 189 (2007) 178.

    Google Scholar 

  49. Johnson S M, Thermal Protection Materials: Development, Characterization and Evaluation. in HiTemp2012, Munich (2012) p1.

  50. Kinoshita M, Kose S, and Hamano Y, Osaka Kogyo Gijutsu Shikenjo Kiho 21 (1970) 97.

    Google Scholar 

  51. Guo S Q, Yang J M, Tanaka H, and Kagawa Y E, Compos Sci Technol 68 (2008) 3033.

    Google Scholar 

  52. Chamberlain A L, Fahrenholtz W G, Hilmas G E, and Ellerby D T. Key Eng Mater, 264–268 (2004) 493.

    Google Scholar 

  53. Hwang S S, Vasiliev A L, and Padture N P, Mater Sci Eng A 464 (2007) 216.

    Google Scholar 

  54. Purwar A, Mukherjee R, Ravikumar K, Ariharan S, Gopinath N K, and Basu B, J Ceram Soc Jpn 124 (2016) 393.

    Google Scholar 

  55. Purwar A, Thiruvenkatam V, and Basu B, J Am Ceram Soc 100 (2017) 4860.

    Google Scholar 

  56. Nisar A, Ariharan S, Venkateswaran T, Sreenivas N, Balani K, Carbon 111 (2017) 269.

    Google Scholar 

  57. Nieto A, Kumar A, Lahiri D, Zhang C, Seal S, and Agarwal A, Carbon 67 (2014) 398.

    Google Scholar 

  58. Johnson SM. In Eng. Ceram. Curr. Status Futur. Prospect. (eds) Ohji T, Singh M, 1st ed., Wiley, Hoboken (2016), p 224.

    Google Scholar 

  59. Stewart D A, and Leiser D B, US Patent 7,314,648 B1 (2008).

  60. Leiser DB, Jose S, Examiner P, Chevalier A, and Robert M, US Patent 7,381,459 B1 (2008).

  61. Stewart D A, and Leiser D B, in 14th AIAA/AHI Sp. Planes Hypersonic Syst. Technol. Conf., Canberra, Australia (2006). https://doi.org/10.2514/6.2006-7945.

  62. Stackpoole M, Ellerby D, Venkatapathy E, and Feldman J, in 9th Model. Simulation, 7th Liq. Propulsion, 6th Spacecr. Propuls. Jt. Subcomm. Meet. (2013).

  63. Jayaseelan DD, Xin Y, Vandeperre L, Brown P, and Lee WE, Compos Part B Eng 79 (2015) 392.

    Google Scholar 

  64. Gild J, Zhang Y, Harrington T, Jiang S, Hu T, Quinn M C, Mellor W M, Zhou N, Vecchio K, and Luo J, Sci Rep 6 (2016) 2.

    Google Scholar 

  65. Castle E, Csanádi T, Grasso S, Dusza J, and Reece M, Sci Rep 8 (2018) 1.

    Google Scholar 

  66. Fahrenholtz W G, J Am Ceram Soc 88 (2005) 3509.

    Google Scholar 

  67. Parthasarathy T A, Rapp R A, Opeka M, and Kerans R J, Acta Mater 55 (2007) 5999.

    Google Scholar 

  68. Zeng Y, Wang D, Xiong X, Zhang X, Withers P J, Sun W, Smith M, Bai M, and Xiao P, Nat Commun 8 (2017) 1.

    Google Scholar 

  69. Cheng T, Keiser J R, Brady M P, Terrani K A, and Pint B A, J Nucl Mater 427 (2012) 396.

    Google Scholar 

  70. Hallstadius L, Johnson S, and Lahoda E, Prog Nucl Energy 57 (2012) 71.

    Google Scholar 

  71. Dobisesky J P, in Reactor Physics Considerations for Implementing Silicon Carbide Cladding into a PWR Environment (2011), p 124.

  72. Veternikobva J, Kilpeläinen S, Slugeň V, and Tuomisto F, Oxide Dispersion Strengthened Steels: A Comparison of Microstructure Features of Some Commercial Steels With Applying of Doppler Broadening Spectroscopy. Technical Report, p 1.

  73. Miller M K, Hoelzer D T, Kenik E A, and Russel K F, Intermetallics 13 (2005) 387.

    Google Scholar 

  74. Vijayalakshmi M. Raj B, Saroja S, Laha K, Vijayalakshmi M and Rao K B S, IGCAR, Kalpakkam, Technical Presentation (2005).

  75. Kumar D, Prakash U, Dabhade V V, Laha K, and Sakthivel T, J Mater Eng Perform 2 6 (2017) 1817.

    Google Scholar 

  76. Liu T, Wang L, Wang C, Shen H, and Zhang H, Mater Des 88 (2015) 862.

    Google Scholar 

  77. Sala G, Gutmann M J, Prabhakaran D, Pomaranski D, Mitchelitis C, Kycia J B, Porter D G, Castelnovo C, and Goff J P, Nat Mater 13 (2014) 488.

    Google Scholar 

  78. Chen Z S, Gong W P, Chen T F, and Li S L, Bull Mater Sci 34 (2011) 429.

    Google Scholar 

  79. Murty K L, and Charit I, J Nucl Mater 383 (2008) 189.

    Google Scholar 

  80. Kim I-S, Choi B-Y, Kang C-Y, Okuda T, Maziasz P J, and Miyahara K. ISIJ Int 43 (2003) 1640.

    Google Scholar 

  81. Snead L L, Burchell T D, and Qualls A L, J Nucl Mater 321 (2003) 165.

    Google Scholar 

  82. Snead L L, Burchell T D, and Katoh Y, J Nucl Mater 381 (2008) 55.

    Google Scholar 

  83. Sauder C, in Ceram Matrix Compos Mater Model Technol (eds) Bansal N P, Lamon J, Wiley, Hoboken (2015) p 609.

    Google Scholar 

  84. El-Guebaly L, and the ARIES Team, Prog Nucl Sci Technol 4 (2014) 118.

    Google Scholar 

  85. El-Guebaly L A, Wilson P, Henderson D, Sawan M, Sviatoslavsky G, Tautges T, Slaybaugh RN, Kiedrowski B, Ibrahim A, Martin C J, Overview of ARIES-CS In-Vessel Components: Integration of Nuclear, Economic, and Safety Constraints in Compact Stellarator Design (2007) p 1–8.

  86. Laurent L, Moreau D, Tonon G, Improvement of the tokamak concept. in International workshop on tokamak concept improvement; Varenna (Italy); International Nuclear Information System (1994) p 1–14.

  87. The “tokamak” concept, http://www.iterbelgium.be/en/tokamak-concept. Accessed November 5, 2018.

  88. Graphite (C)—Classifications, Properties and Applications of Graphite, https://www.azom.com/article.aspx?ArticleID=1630. Accessed November 5, 2018.

  89. Inorganic Material Database (AtomWork), http://crystdb.nims.go.jp/index_en.html. Accessed November 5, 2018.

  90. Sengupta P, Oxidation of Graphite and Its Protection, M.Tech thesis, Indian Institute of Technology Kanpur (2013).

  91. Baskin Y, and Meyer L, Phys Rev 100 (1955) 544.

    Google Scholar 

  92. Graphite, https://www.mindat.org/min-1740.html. Accessed November 5, 2018.

  93. Tungsten, https://www.tungsten.com/materials/tungsten/. Accessed November 5, 2018.

  94. Lassner E, and Schubert W D, Tungsten, Springer, Boston (1999).

    Google Scholar 

  95. Sengupta P, and Debata M, J Alloys Compd 774 (2019) 145.

    Google Scholar 

  96. German R M, Powder Metallurgy Science. 2nd ed. Metal Powder Industries Federation, Princeton (1994).

    Google Scholar 

  97. Bounds C O, Bray J W, Brodsky M B, Brog T K, Capellen J, Cascone P J, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Almere (1991).

    Google Scholar 

  98. Periodic table, http://periodictable.com/. Accessed November 5, 2018.

  99. Card number 75-1050, Powder Diffraction File, International Centre for Diffraction Data.

  100. Fahrenholtz W G, Hilmas G E, Talmy I G, and Zaykoski J A, J Am Ceram Soc 90 (2007) 1347.

    Google Scholar 

  101. McHale A E, Data Collected from Phase Diagrams for Ceramics, vol. X, American Ceramic Society, Westerville (1994).

    Google Scholar 

  102. The physical properties of a compound: Melting point, http://jnm.co.jp/en/data/melting_point.html. Accessed on November 5, 2018.

  103. Cutler R A. in Ceram. Glas. Eng. Mater. handb. (ed) S. J. Schneider Jr, ASM International, Materials Park (1991) p 787.

    Google Scholar 

  104. Chamberlain A L, Fahrenholtz W G, Hilmas G E, and Ellerby D T, J Am Ceram Soc 87 (2004) 1170.

    Google Scholar 

  105. The physical properties of a compound: Thermal conductivity, http://jnm.co.jp/en/data/thermal_conductivity.html. Accessed on November 5, 2018.

  106. Card number 89-3651, Powder Diffraction File, International Centre for Diffraction Data.

  107. Wuchina E, Opeka M, Causey S, Buesking K, Spain J, Cull A, Routbort J, and Guitierrez-Mora F, Scr Mater 39 (2004) 5939.

    Google Scholar 

  108. Shackelford J F, Alexander W. CRC Materials Science and Engineering Handbook. CRC Press; (2000).

  109. Samsonov G V, editor. Refractory Carbides, Consultants Bureau, London (1974).

    Google Scholar 

  110. Jia P, Chen L, Rao J, Wang Y, Meng Q, and Zhou Y, Sci Rep 7 (2017) 1.

    Google Scholar 

  111. Balko J, Csanádi T, Sedlák R, Vojtko M, Kovalčíková A, Koval K, Wyzga P, and Naughton-Duszová A, J Eur Ceram Soc 37 (2017) 4371.

    Google Scholar 

  112. Zirconium carbide, https://www.azom.com/properties.aspx?ArticleID=261. Accessed on November 5, 2018.

  113. Coefficient of Linear Expansion (CTE) of Metals and Alloys. https://ctherm.com/resources/blog/coefficient_of_linear_expansion_cte_of_metals_and_alloys/. Accessed November 5, 2018.

  114. Lengauer W, Binder S, Aigner K, Ettmayer P, Guillou A, Debuigne J, and Groboth G, J Alloys Compd 217 (1995) 137.

    Google Scholar 

  115. Opeka M M, Talmy I G, Wuchina E J, Zaykoski J A, and Causey S J, J Eur Ceram Soc 19 (1999) 2405.

    Google Scholar 

  116. Guo SQ, Kagawa Y, and Nishimura T. J Eur Ceram Soc 29 (2009) 787.

    Google Scholar 

  117. Chamberlain A L, Fahrenholtz W G, and Hilmas G E. J Am Ceram Soc 89 (2006) 450.

    Google Scholar 

  118. Hu C, Sakka Y, Jang B, Tanaka H, Nishimura T, Guo S, and Grasso S, J Ceram Soc Jpn 118 (2010) 997.

    Google Scholar 

  119. Monteverde F, Guicciardi S, and Bellosi A, Mater Sci Eng A 346 (2003) 310.

    Google Scholar 

  120. Zou J, Zhang G J, Hu C F, Nishimura T, Sakka Y, Vleugels J, and Van der Biest O, J Am Ceram Soc 95 (2012) 874.

    Google Scholar 

  121. Zhu S, Fahrenholtz W G, and Hilmas G E, J Eur Ceram Soc 27 (2007) 2077.

    Google Scholar 

  122. Rezaie A, Fahrenholtz W G, and Hilmas G E, J Mater Sci 42 (2007) 2735.

    Google Scholar 

  123. Bin M H, Man Z Y, Liu J X, Xu F F, and Zhang G J, Mater Des 81 (2015) 133.

    Google Scholar 

  124. Silvestroni L, Kleebe H J, Fahrenholtz W G, and Watts J, Sci Rep 7 (2017) 1.

    Google Scholar 

  125. Ni D-W, Zhang G-J, Kan Y-M, and Wang P-L, Int J Appl Ceram Technol 7 (2010) 830.

    Google Scholar 

  126. Nisar A, Ariharan S, Venkateswaran T, Sreenivas N, and Balani K, Corros Sci 109 (2016) 50.

    Google Scholar 

  127. Fahrenholtz W G, Neuman E W, Brown-Shaklee H J, and Hilmas G E, J Am Ceram Soc 93 (2010) 3580.

    Google Scholar 

  128. Neuman E W, Brown-Shaklee H J, Hilmas G E, and Fahrenholtz W G, J Am Ceram Soc 101 (2018) 497.

    Google Scholar 

  129. Mitra R, Upender S, Mallik M, Chakraborty S, and Ray K K, Key Eng Mater 395 (2009) 55.

    Google Scholar 

  130. Naslain R R, in Eng. Ceram. Curr. Status Futur. Prospect (eds) Ohji T, Singh M, Wiley, Hoboken (2016) p 142.

    Google Scholar 

  131. HI-Nicalon Type S Ceramic fiber, http://www.coiceramics.com/pdfs/hi-nicalon-types_1-17-06.pdf. Accessed on Novermber 5, 2018.

  132. Koyanagi T, Katoh Y, Nozawa T, Snead L L, Kondo S, Henager C H, Ferraris M, Hinoki T, and Huang Q, J Nucl Mater 511 (2018) 544.

    Google Scholar 

Download references

Acknowledgements

Pradyut Sengupta acknowledges Director, CSIR–Institute of Minerals and Materials Technology, Bhubaneswar for valuable comments and insightful suggestions. PS also acknowledges the financial support from CSIR–IMMT through institutional project OLP–76. Indranil Manna gratefully acknowledges partial financial support from ISRO funded project ‘OCM’ and DST funded project ‘DGL’ at IIT Kharagpur and his personal support from Institute Chair Professorship (IIT Kharagpur) and JC Bose Fellowship (DST). Both the authors wish to record their deepest respect and gratitude to Professor E C Subbarao for his enormous and landmark contributions to the field of Materials Science and Engineering, in particular, to Advanced Ceramics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Manna.

Additional information

Dedicated in the honour of Professor Dr. Eleswarapu Chinna Subbarao, the doyen of engineering education and pioneer of the subject domain of Materials Science and Engineering in India.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, P., Manna, I. Advanced High-Temperature Structural Materials for Aerospace and Power Sectors: A Critical Review. Trans Indian Inst Met 72, 2043–2059 (2019). https://doi.org/10.1007/s12666-019-01598-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01598-z

Keywords

Navigation