Skip to main content
Log in

Differences in Diurnal Variation of Immune Responses in Microglia and Macrophages: Review and Perspectives

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 10 October 2019

This article has been updated

Abstract

Biological rhythms, especially those that last close to 24 h, better known as circadian rhythms, are highly regulated phenomena, maintained throughout evolution in various organisms which allow organisms to predict, prepare for, and adapt to environmental changes. One of these phenomena that exhibit biological rhythms is the immune response to external agents. Immune cells (neutrophils, lymphocytes, macrophages, among others), as well as their mediators such as cytokines and chemokines, undergo variations in tissue and blood concentrations during the day. These rhythms are still being elucidated in microglia, the resident macrophages of the central nervous system, but since these cells share a common origin with peripheral macrophages, they are expected to behave similarly. In this review, we will discuss the possible differences in the responses between peripheral macrophages and microglia, their relationship with the circadian clock, and whether these rhythms can influence therapeutic choices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 10 October 2019

    The original version of this article unfortunately contained an error in the author group. The given name and family name was interchanged for the two co-authors. The author name should be Anahí Chavarría and Luz Navarro instead it was published incorrectly as Chavarría Anahí and Navarro Luz. The original article has been corrected.

References

  • Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schütz G, Schibler U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289(5488):2344–2347

    Article  CAS  PubMed  Google Scholar 

  • Besedovsky L, Lange T, Born J (2012) Sleep and immune function. Pflugers Arch 463(1):121–137

    Article  CAS  PubMed  Google Scholar 

  • Bhadra U, Thakkar N, Das P, Pal Bhadra M (2017) Evolution of circadian rhythms: from bacteria to human. Sleep Med 35:49–61

    Article  PubMed  Google Scholar 

  • Brown GC, Neher JJ (2014) Microglial phagocytosis of live neurons. Nat Rev Neurosci 15(4):209–216

    Article  CAS  PubMed  Google Scholar 

  • Butovsky O, Madore C, Weiner H (2016) Chapter 13: Microglial Biology and Physiology. In: Ikezu T, Gendelman HE (eds) Neuroimmune Pharmacology, 2nd edn. Springer, New York, pp 167–200

    Google Scholar 

  • Casanova-Acebes M, Pitaval C, Weiss LA, Nombela-Arrieta C, Chèvre R, A-González N et al (2013) Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153(5):1025–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cermakian N, Lange T, Golombek D, Sarkar D, Nakao A, Shibata S, Mazzoccoli G (2013) Crosstalk between the circadian clocl circuitry and the immune system. Chronobiol Int 30(70):870–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GY, Nuñez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi-Castañeda D, Ortega A (2018) Glial cells in the genesis and regulation of circadian rhythms. Front Physiol 9:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark AK, Malcangio M (2013) Microglial signaling mechanisms: Cathepsin S and Fractalkine. Exp Neurol 234(2):283–292

    Article  CAS  Google Scholar 

  • Cuddapah VA, Zhang SL, Sehgal A (2019) Regulation of the blood–brain barrier by circadian rhythms and sleep. Trends Neurosci 42(7):500–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis AM, Bellet MM, Sassone-Corsi P, O´Neil LAJ (2014) Circadian clock proteins and immunity. Immunity 40:178–186

    Article  CAS  PubMed  Google Scholar 

  • Curtis AM, Fagundes CT, Tang G, Palsson-McDermott EM, Wochal P, McGettrick AF et al (2015) Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proc Natl Acad Sci USA 112(23):7231–7236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druzd D, Matveeva O, Ince L, Harrison U, He W, Schmal C et al (2017) Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46(1):120–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durgan DJ, Young ME (2010) The cardiomyocyte circadian clock: emerging roles in health and disease. Circ Res 106(4):647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ella K, Csépányi-Kömi R, Káldi K (2016) Circadian regulation of human peripheral neutrophils. Brain Behav Immun 57:209–221

    Article  CAS  PubMed  Google Scholar 

  • Estrada-Rojo F, Morales Gomez J, Coballase-Urrutia E, Martínez-Vargas M, Navarro L (2018) Diurnal variation of NMDA receptor expression in the rat cerebral cortex is associated with traumatic brain injury damage. BMC Res Notes 11:150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fonken LK, Frank MG, Kitt MM, Barrientos RM, Watkins LR, Maier SF (2015) Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav Immun 45:171–179

    Article  CAS  PubMed  Google Scholar 

  • Fonken LK, Weber MD, Daut RA, Kitt MM, Frank MG, Watkins LR, Maier SF (2016) Stress-induced neuroinflammatory priming is time of day dependent. Psychoneuroendocrinology 66:82–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger SS, Fagundes CT, Siegel RM (2015) Chrono-immunology: progress and challenges in understanding links between the circadian and immune systems. Immunology 146(3):349–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, Boyce SH et al (2012) The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci USA 109(2):582–587

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Vargas NN, Salgado-Delgado R, del Basualdo M, García J, Guzmán-Ruiz M, Carrera JC et al (2014) Reciprocal interaction between the suprachiasmatic nucleus and the immune system tunes down the inflammatory response to lipopolysaccharide. J Neuroimmunol 273(1–2):22–30

    Article  CAS  PubMed  Google Scholar 

  • Haimovich B, Calvano J, Haimovich AD, Calvano SE, Coyle SM, Lowry SF (2010) In vivo endotoxin synchronizes and suppresses clock gene expression in human peripheral blood leukocytes. Crit Care Med 38(3):751–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi M, Shimba S, Tezuka M (2007) Characterization of the molecular clock in mouse peritoneal macrophages. Biol Pharm Bull 30(4):621–626

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Koyanagi S, Kusunose N, Takayama F, Okada R, Wu Z et al (2013a) Diurnal spatial rearrangement of microglial processes through the rhythmic expression of P2Y12 receptors. J Neurol Disord 1:120

    Article  Google Scholar 

  • Hayashi Y, Koyanagi S, Kusunose N, Okada R, Wu Z, Tozaki-Saitoh H et al (2013b) The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S. Sci Rep 3:2744

    Article  PubMed  PubMed Central  Google Scholar 

  • Heindl S, Gesierich B, Benakis C, Llovera G, Duering M, Liesz A (2018) Automated morphological analysis of microglia after stroke. Front Cell Neurosci 12:106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Honey K, Rudensky AY (2003) Lysosomal cysteine proteases regulate antigen presentation. Nat Rev Immunol 3(6):472–482

    Article  CAS  PubMed  Google Scholar 

  • Hristovska I, Pascual O (2016) Deciphering resting microglia morphology and process motility from a synaptic prospect. Front Integr Neurosci 19:9–73

    Google Scholar 

  • Hsieh CS, deRoos P, Honey K, Beers C, Rudensky AY (2002) A role for cathepsin L and cathepsin S in peptide generation for MHC class II presentation. J Immunol 168(6):2618–2625

    Article  CAS  PubMed  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147):147

    Article  CAS  Google Scholar 

  • Imeri L, Opp MR (2009) How (and why) the immune system makes us sleep. Nat Rev Neurosci 10(3):199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, Xiang Y et al (2018) Microglia: housekeeper of the central nervous system. Cell Mol Neuriobiol 38(1):53–71

    Article  CAS  Google Scholar 

  • Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T (2017) Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke. Int J Mol Sci 18:2135

    Article  PubMed Central  CAS  Google Scholar 

  • Karatsoreos IN, Silver R (2017) Chapter 27 Body Clocks in Health and Disease. In: Michael Conn P (ed) Conn’s translational neuroscience. Academic Press, Cambridge, pp 599–615

    Chapter  Google Scholar 

  • Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD et al (2009) A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci USA 106(50):21407–21412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kierdorf K, Prinz M (2017) Microglia in steady state. J Clin Invest 127(9):3201–3209

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiessling S, Dubeau-Laramée G, Ohm H, Labrecque N, Olivier M, Cermakian N (2017) The circadian clock in immune cells controls the magnitude of Leishmania parasite infection. Sci Rep 7(1):10892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Labrecque N, Cermakian N (2015) Circadian clocks in the immune system. J Biol Rhythms 30(4):277–290

    Article  CAS  PubMed  Google Scholar 

  • Lamia KA, Storch KF, Weitz CJ (2008) Physiological significance of peripheral tissue circadian clock. Proc Natl Acad Sci USA 105(39):15172–15177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1):151–170

    Article  CAS  PubMed  Google Scholar 

  • Matsui MS, Pelle E, Dong K, Pernodet N (2016) Biological rhythms in the skin. Int J Mol Sci 17(6):E801

    Article  PubMed  CAS  Google Scholar 

  • Morrison H, Young K, Qureshi M, Rowe RK, Lifshitz J (2017) Quantitative microglia analyses reveal diverse morphologic responses in the rat cortex after diffuse brain injury. Sci Rep 7(13211):1–12

    Google Scholar 

  • Morton GJ, Meek TH, Schwartz MW (2014) Neurobiology of food intake in health and disease. Nat Rev Neurosci 15(6):367–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Oishi Y, Hayashi S, Isagawa T, Oshima M, Iwama A, Shimba S et al (2017) Bmal1 regulates inflammatory responses in macrophages by modulating enhancer RNA transcription. Sci Rep 7(1):7086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parkin J, Cohen B (2001) An overview if the immune system. Lancet 357(9270):1777–1789

    Article  CAS  PubMed  Google Scholar 

  • Petrovsky N (2001) Towards a unified model of neuroendocrine-immune interaction. Immunol Cell Biol 79:350–357

    Article  CAS  PubMed  Google Scholar 

  • Plog BA, Nedergaard M (2018) The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol 13:379–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rensing L, Ruoff P (2002) Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol Int 19(5):807–864

    Article  CAS  PubMed  Google Scholar 

  • Sahar S, Sassone-Corsi P (2012) Regulation of metabolism: the circadian clock dictates the time. Trends Encodrinol Metab 23(1):1–8

    Article  CAS  Google Scholar 

  • Savchenko VL, Nikonenko IR, Skibo GG, McKanna JA (1997) Distribution of microglia and astrocytes in different regions of the normal adult rat brain. Neurophysiology 29(6):343–351

    Article  Google Scholar 

  • Scheiermann C, Kunisaki Y, Lucas D, Chow A, Jang JE, Zhang D et al (2012) Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37(2):290–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheiermann C, Kunisaki Y, Frenette PS (2013) Circadian control of the immune system. Nat Rev Immunol 13(3):190–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheiermann C, Gibbs J, Ince L, Loudon A (2018) Clocking into immunity. Nat Rev Immunol 18(7):423–437

    Article  CAS  PubMed  Google Scholar 

  • Schibler U, Sassone-Corsi P (2002) A web of circadian pacemakers. Cell 111(7):912–922

    Article  Google Scholar 

  • Silver AC, Arjona A, Walker WE, Fikrig E (2012) The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity 36(2):251–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder RJ, Lantis J, Kirsner RS, Shah V, Molyneaux M, Carter MJ (2016) Macrophages: a review of their role in wound healing and their therapeutic use. Wound Repair Regen 24(4):613–629

    Article  PubMed  Google Scholar 

  • Solocinski K, Gumz ML (2015) The circadian clock in the regulation of renal rhythms. J Biol Rhythms 30(6):470–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18(3):164–179

    Article  CAS  PubMed  Google Scholar 

  • Takayama F, Hayashi Y, Wu Z, Liu Y, Nakanishi H (2016) Diurnal dynamic behavior of microglia in response to infected bacteria through the UDP-P2Y6 receptor system. Sci Rep 6:30006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terzibasi-Tozzini E, Martínez-Nicolas A, Lucas Sánchez A (2017) The clock is ticking. Ageing of the circadian system: from physiology to cell cycle. Semin Cell Dev Biol 70:164–176

    Article  CAS  PubMed  Google Scholar 

  • Tozaki-Saitoh H, Tsuda M, Inoue K (2012) P2Y receptors in microglia and neuroinflammation. WIREs Membr Transp Signal 1:493–501

    Article  CAS  Google Scholar 

  • Tremblay MÈ, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31(45):16064–16069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Videnovic A, Lazar AS, Barker RA, Overeem S (2014) ‘The clocks that time us’–circadian rhythms in neurodegenerative disorders. Nat Rev Neurol 10(12):683–693

    Article  PubMed  PubMed Central  Google Scholar 

  • Vincenti JE, Murphy L, Grabert K, McColl BW, Cancellotti E, Freeman TC, Manson JC (2015) Defining the microglia response during the time course of chronic neurodegeneration. J Virol 90(6):3003–3017

    Article  PubMed  CAS  Google Scholar 

  • Weil ZM, Karelina K, Su AJ, Barker JM, Norman GJ, Zhang N et al (2009) Time-of-day determines neuronal damage and mortality after cardiac arrest. Neurobiol Dis 36(2):352–360

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolf SA, Boddeke HWGM, Kettenmann H (2017) Microglia in Physiology and Disease. Annu Rev Physiol 79:619–643

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B (2015) Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol 36(10):605–613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Ricardo Jesús Martínez Tapia is a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and received fellowship 594665 from CONACYT. Also, the project received support from PAPIIT: IN223417. We want to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

RJMT, AC, and LN designed the paper; RJMT wrote the paper and designed the figures; and AC and LN reviewed the manuscript.

Corresponding author

Correspondence to Luz Navarro.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The given name and family name was interchanged for the co-authors and it was corrected as Anahí Chavarría and Luz Navarro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Tapia, R.J., Chavarría, A. & Navarro, L. Differences in Diurnal Variation of Immune Responses in Microglia and Macrophages: Review and Perspectives. Cell Mol Neurobiol 40, 301–309 (2020). https://doi.org/10.1007/s10571-019-00736-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-019-00736-x

Keywords

Navigation