Skip to main content

Advertisement

Log in

LITAF Enhances Radiosensitivity of Human Glioma Cells via the FoxO1 Pathway

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF), also called p53-induced gene 7 (PIG7), was identified as a transcription factor that activates transcription of proinflammatory cytokines in macrophages in response to lipopolysaccharide (LPS). Previous studies have identified LITAF as a potential tumor suppressor in several neoplasms, including prostate cancer, B-NHL, acute myeloid leukemia, and pancreatic cancer. However, the expression and function of LITAF in human glioma remain unexplained. The present study aimed to analyze the regulation of LITAF in gliomas. Data from The Cancer Genome Atlas (TCGA) database revealed that LITAF mRNA expression in glioma tissues was higher than that in normal brain tissues, and lower LITAF expression in gliomas showed a good prognosis in patients who received radiotherapy, by Kaplan–Meier analysis. In our collected specimens, however, LITAF showed low expression in glioma tissues compared to that in the normal brain tissue. Proliferation and apoptosis of glioma cells were not affected by knockdown or overexpression of LITAF in glioma U251, U373, and U87 cells, but LITAF was able to enhance the radiosensitivity of glioma cells. Furthermore, we found that LITAF enhanced radiosensitivity via FoxO1 and its specific downstream targets BIM, TRAIL, and FASLG. Taken together, our present results demonstrate that LITAF expression is decreased in glioma tissues and might enhance radiosensitivity of glioma cells via upregulation of the FoxO1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agnihotri S, Burrell KE, Wolf A, Jalali S, Hawkins C, Rutka JT, Zadeh G (2013) Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp 61:25–41

    Article  CAS  Google Scholar 

  • Alikhani M, Alikhani Z, Graves DT (2005) FOXO1 functions as a master switch that regulates gene expression necessary for tumor necrosis factor-induced fibroblast apoptosis. J Biol Chem 280:12096–12102

    Article  CAS  PubMed  Google Scholar 

  • Bertolo C, Roa S, Sagardoy A, Mena-Varas M, Robles EF, Martinez-Ferrandis JI, Sagaert X, Tousseyn T, Orta A, Lossos IS, Amar S, Natkunam Y, Briones J, Melnick A, Malumbres R, Martinez-Climent JA (2013) LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas. Br J Haematol 162:621–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bois PRJ, Izeradjene K, Houghton PJ, Cleveland JL, Houghton JA, Grosveld GC (2005) FOXO1a acts as a selective tumor suppressor in alveolar rhabdomyosarcoma. J Cell Biol 170:903–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego O (2015) Nonsurgical treatment of recurrent glioblastoma. Curr Oncol 22:e273–e281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilley J, Coffer PJ, Ham J (2003) FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol 162:613–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoey C, Ray J, Jeon J, Huang X, Taeb S, Ylanko J, Andrews DW, Boutros PC, Liu SK (2018) miRNA-106a and prostate cancer radioresistance: a novel role for LITAF in ATM regulation. Mol Oncol 12:1324–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Daitoku H, Fukamizu A (2009) Foxo1 increases pro-inflammatory gene expression by inducing C/EBPbeta in TNF-alpha-treated adipocytes. Biochem Biophys Res Commun 378:290–295

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Li T, Yang Z, Hu W, Yang Y (2018) Deciphering the roles of FOXO1 in human neoplasms. Int J Cancer 143(7):1560–1568

    Article  CAS  PubMed  Google Scholar 

  • Kayal RA, Siqueira M, Alblowi J, McLean J, Krothapalli N, Faibish D, Einhorn TA, Gerstenfeld LC, Graves DT (2010) TNF-α mediates diabetes-enhanced chondrocyte apoptosis during fracture healing and stimulates chondrocyte apoptosis Through FOXO1. J Bone Miner Res 25:1604–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapointe S, Perry A, Butowski NA (2018) Primary brain tumours in adults. Lancet 392:432–446

    Article  PubMed  Google Scholar 

  • Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  • Merrill JC, You J, Constable C, Leeman SE, Amar S (2011) Whole-body deletion of LPS-induced TNF-alpha factor (LITAF) markedly improves experimental endotoxic shock and inflammatory arthritis. Proc Natl Acad Sci USA 108:21247–21252

    Article  PubMed  PubMed Central  Google Scholar 

  • Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, Siebert R, Climent J, Fresquet V, Beltran E, Agirre X, Marugan I, Marin M, Rosenwald A, Sugimoto KJ, Wheat LM, Karran EL, Garcia JF, Sanchez L, Prosper F, Staudt LM, Pinkel D, Dyer MJS, Martinez-Climent JA (2007) Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood 109:271–280

    Article  CAS  PubMed  Google Scholar 

  • Myokai F, Takashiba S, Lebo R, Amar S (1999) A novel lipopolysaccharide-induced transcription factor regulating tumor necrosis factor alpha gene expression: molecular cloning, sequencing, characterization, and chromosomal assignment. Proc Natl Acad Sci USA 96:4518–4523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2017) CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro Oncol 19:v1–v88

    Article  PubMed  PubMed Central  Google Scholar 

  • Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–305

    Article  CAS  PubMed  Google Scholar 

  • Schijns V, Pretto C, Strik AM, Gloudemans-Rijkers R, Deviller L, Pierre D, Chung J, Dandekar M, Carrillo JA, Kong XT, Fu BD, Hsu F, Hofman FM, Chen TC, Zidovetzki R, Bota DA, Stathopoulos A (2018) Therapeutic Immunization against glioblastoma. Int J Mol Sci 19:2540

    Article  CAS  PubMed Central  Google Scholar 

  • Stucchi A, Reed K, O’Brien M, Cerda S, Andrews C, Gower A, Bushell K, Amar S, Leeman S, Becker J (2006) A new transcription factor that regulates TNF-alpha gene expression, LITAF, is increased in intestinal tissues from patients with CD and UC. Inflamm Bowel Dis 12:581–587

    Article  PubMed  Google Scholar 

  • Tang X, Marciano DL, Leeman SE, Amar S (2005) LPS induces the interaction of a transcription factor, LPS-induced TNF-alpha factor, and STAT6(B) with effects on multiple cytokines. Proc Natl Acad Sci USA 102:5132–5137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Metzger D, Leeman S, Amar S (2006) LPS-induced TNF-alpha factor (LITAF)-deficient mice express reduced LPS-induced cytokine: evidence for LITAF-dependent LPS signaling pathways. Proc Natl Acad Sci USA 103:13777–13782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Woodward T, Amar S (2010) A PTP4A3 peptide PIMAP39 modulates TNF-alpha levels and endotoxic shock. J Innate Immun 2:43–55

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Liu J, Tang K, Xu Z, Xiong X, Rao Q, Wang M, Wang J (2009) Expression of pig7 gene in acute leukemia and its potential to modulate the chemosensitivity of leukemic cells. Leuk Res 33:28–38

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Shi Y, Wang L, Ren G, Bai Y, Shi H, Zhang X, Jiang X, Zhou R (2014a) Significance of expression and promoter methylation of LITAF gene in B-cell lymphoma. Zhonghua Bing Li Xue Za Zhi 43:516–521

    CAS  PubMed  Google Scholar 

  • Wang XW, Yu Y, Gu L (2014b) Dehydroabietic acid reverses TNF-alpha-induced the activation of FOXO1 and suppression of TGF-beta1/Smad signaling in human adult dermal fibroblasts. Int J Clin Exp Pathol 7:8616–8626

    PubMed  PubMed Central  Google Scholar 

  • Wesseling P, Capper D (2018) WHO 2016 classification of gliomas. Neuropathol Appl Neurobiol 44:139–150

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Elshimali Y, Sarkissyan M, Mohamed H, Clayton S, Vadgama JV (2012) Expression of FOXO1 is associated with GATA3 and Annexin-1 and predicts disease-free survival in breast cancer. Am J Cancer Res 2:104–115

    CAS  PubMed  Google Scholar 

  • Xie L, Ushmorov A, Leithauser F, Guan H, Steidl C, Farbinger J, Pelzer C, Vogel MJ, Maier HJ, Gascoyne RD, Moller P, Wirth T (2012) FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood 119:3503–3511

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Wu A (2018) FOXO1 is crucial in glioblastoma cell tumorigenesis and regulates the expression of SIRT1 to suppress senescence in the brain. Mol Med Rep 17:2535–2542

    PubMed  Google Scholar 

  • Zhang Y, Gan B, Liu D, Paik J (2011) FoxO family members in cancer. Cancer Biol Ther 12:253–259

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Luo R, Liu Y, Gao L, Fu Z, Fu Q, Luo X, Chen Y, Deng X, Liang Z, Li X, Cheng C, Liu Z, Fang W (2016) miR-3188 regulates nasopharyngeal carcinoma proliferation and chemosensitivity through a FOXO1-modulated positive feedback loop with mTOR–p-PI3 K/AKT-c-JUN. Nat Commun 7:11309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Zou J, Wang W, Feng X, Shi Y, Zhao Y, Jin G, Liu Z (2011) Tumor necrosis factor-α increases angiopoietin-like protein 2 gene expression by activating Foxo1 in 3T3-L1 adipocytes. Mol Cell Endocrinol 339:120–129

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Yang Z, Tsuji T, Gong J, Xie J, Chen C, Li W, Amar S, Luo Z (2011) LITAF and TNFSF15, two downstream targets of AMPK, exert inhibitory effects on tumor growth. Oncogene 30:1892–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Huang J, Yu X, Jiang X, Shi Y, Weng Y, Kuai Y, Lei L, Ren G, Feng X, Zhong G, Liu Q, Pan H, Zhang X, Zhou R, Lu C (2018) LITAF is a potential tumor suppressor in pancreatic cancer. Oncotarget 9:3131–3142

    PubMed  Google Scholar 

  • Zou J, Guo P, Lv N, Huang D (2015) Lipopolysaccharide-induced tumor necrosis factor-alpha factor enhances inflammation and is associated with cancer. Mol Med Rep 12:6399–6404

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (No. 81372408).

Author information

Authors and Affiliations

Authors

Contributions

CH, DC, and HZ performed the experiments and analyzed the data. SL and QL provided the human specimen. CH and GL wrote the paper. DC and GL designed the research.

Corresponding author

Correspondence to Guanghui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest for this manuscript.

Ethics Approval

All experimental protocols were approved by the Ethics Committee of The Xinqiao Hospital, Chongqing 40037, China (No. AF/SC-08/1.0). All procedures performed in studies involving human specimen were in accordance with the ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Chen, D., Zhu, H. et al. LITAF Enhances Radiosensitivity of Human Glioma Cells via the FoxO1 Pathway. Cell Mol Neurobiol 39, 871–882 (2019). https://doi.org/10.1007/s10571-019-00686-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-019-00686-4

Keywords

Navigation