Skip to main content

Advertisement

Log in

microRNA Expression Pattern Modulates Temozolomide Response in GBM Tumors with Cancer Stem Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Temozolomide (TMZ) is widely used to treat glioblastoma multiforme (GBM). Although the MGMT gene methylation status is postulated to correlate with TMZ response, some patients with a methylated MGMT gene still do not benefit from TMZ therapy. Cancer stem cells (CSCs) may be one of the causes of therapeutic resistance, but the molecular mechanism underlying this resistance is unclear. microRNA (miRNA) deregulation has been recognized as another chemoresistance modulating mechanism. Thus, we aimed to evaluate the miRNA expression patterns associated with chemoresistance that is dependent on the CSC status in GBM tumors to identify therapeutic biomarkers. CSCs were identified in 5 of 20 patients’ tumor tissues using magnetic separation. CSC (+) tumors displayed a significant induction of CpG island methylation in the MGMT gene promoter (p = 0.009). Using real-time reverse transcription polymerase chain reaction (qRT-PCR), 9 miRNAs related to GBM (mir-181b, miR-153, miR-137, miR-145, miR-10a, miR-10b, let-7d, miR-9, and miR-455-3p), which are associated with cell cycle and invasion was analyzed in tumor samples. Low miR-181b and high miR-455-3p expression levels were detected (p = 0.053, p = 0.004; respectively) in CSC (+) tumors. Analysis revealed a significant correlation between miR-455-3p expression and Smad2 protein levels as analyzed by immunohistochemistry in CSC (+) tumors (p = 0.002). Thus, miR-455-3p may be involved in TMZ resistance in MGMT methylated CSC (+) GBM patients. Further studies and evaluations are required, but this miRNA may provide novel therapeutic molecular targets for GBM treatment and new directions for the development of anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altaner C (2008) Glioblastoma and stem cells. Neoplasma 55:369–374

    CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bier A, Giladi N, Kronfeld N et al (2013) MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1. Oncotarget 4(5):665–676

    PubMed Central  PubMed  Google Scholar 

  • Bisso A, Faleschini M, Zampa F et al (2013) Oncogenic miR-181a/b affect the DNA damage response in aggressive breast cancer. Cell Cycle 12(11):1679–1687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brescia P, Ortensi B, Fornasari L et al (2013) CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31(5):857–869

    Article  CAS  PubMed  Google Scholar 

  • Bruna A, Darken RS, Rojo F et al (2007) High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11(2):147–160

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Pekarsky Y, Croce CM (2007) The role of microRNA and other non-coding RNA in the pathogenesis of chronic lymphocytic leukemia. Best Pract Res Clin Haematol 20(3):425–437

    Article  CAS  PubMed  Google Scholar 

  • Cecener G, Tunca B, Egeli U et al (2012) The promoter hypermethylation status of GATA6, MGMT, and FHIT in glioblastoma. Cell Mol Neurobiol 32(2):237–244

    Article  CAS  PubMed  Google Scholar 

  • Cheng WY, Kandel JJ, Yamashiro DJ et al (2012) A multi-cancer mesenchymal transition gene expression signature is associated with prolonged time to recurrence in glioblastoma. PLoS One 7(4):e34705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dirks PB (2005) Brain tumor stem cells. Biol Blood Marrow Transpl 11(2 Suppl 2):12–13

    Article  Google Scholar 

  • Esquela-Kerscher A, Slack FJ (2006) Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  PubMed  Google Scholar 

  • Everhard S, Tost J, El Abdalaoui H et al (2009) Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas. Neuro Oncol 11(4):348–356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Galli R, Binda E, Orfanelli U (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  CAS  PubMed  Google Scholar 

  • Guessous F, Alvarado-Velez M, Marcinkiewicz L et al (2013) Oncogenic effects of miR-10b in glioblastoma stem cells. J Neurooncol 112(2):153–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haapa-Paananen S, Chen P, Hellström K et al (2013) Functional profiling of precursor MicroRNAs identifies MicroRNAs essential for glioma proliferation. PLoS One 8(4):e60930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    Article  CAS  PubMed  Google Scholar 

  • Hemmati HD, Nakano I, Lazareff JA et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirata H, Hinoda Y, Ueno K et al (2012) MicroRNA-1826 targets VEGFC, beta-catenin (CTNNB1) and MEK1 (MAP2K1) in human bladder cancer. Carcinogenesis 33(1):41–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hummel R, Hussey DJ, Haier J (2010) MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer 46(2):298–311

    Article  CAS  PubMed  Google Scholar 

  • Ichimura K, Pearson DM, Kocialkowski S et al (2009) IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 11(4):341–347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ignatova TN, Kukekov VG, Laywell ED et al (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206

    Article  PubMed  Google Scholar 

  • Jeon HM, Sohn YW, Oh SY et al (2011) ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res 71(9):3410–3421

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Kocialkowski S, Liu LETAL (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68(21):8673–8677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kloth JN, Kenter GG, Spijker HS et al (2008) Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival. Mod Pathol 21(7):866–875

    Article  CAS  PubMed  Google Scholar 

  • Koo S, Martin GS, Schulz KJ et al (2012) Serial selection for invasiveness increases expression of miR-143/miR-145 in glioblastoma cell lines. BMC Cancer 10(12):143

    Article  Google Scholar 

  • Kreth S, Limbeck E, Hinske LC et al (2013) In human glioblastomas transcript elongation by alternative polyadenylation and miRNA targeting is a potent mechanism of MGMT silencing. Acta Neuropathol 125(5):671–681

    Article  CAS  PubMed  Google Scholar 

  • Lathia JD, Gallagher J, Myers JT et al (2011) Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells. PLoS One 6(9):e24807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee ST, Chu K, Oh HJ et al (2011) Let-7 microRNA inhibits the proliferation of human glioblastoma cells. J Neurooncol 102:19–24

    Article  CAS  PubMed  Google Scholar 

  • Lee HK, Bier A, Cazacu S et al (2013) MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor. PLoS One 8(2):e54652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leibetseder A, Ackerl M, Flechl B et al (2013) Outcome and molecular characteristics of adolescent and young adult patients with newly diagnosed primary glioblastoma: a study of the Society of Austrian Neurooncology (SANO). Neuro Oncol 15(1):112–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicated that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  • Li Y, VandenBoom TG 2nd, Kong D et al (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69(16):6704–6712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li P, Lu X, Wang Y et al (2010) MiR-181b suppresses proliferation of and reduces chemoresistance to temozolomide in U87 glioma stem cells. J Biomed Res 24(6):436–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133+cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Δ Δ C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed Central  PubMed  Google Scholar 

  • M-Chang CJ, Hsu CC, Chang CH et al (2011) Let-7d functions as novel regulator of epithelial-mesenchymal transition and chemoresistant property in oral cancer. Oncol Rep 26(4):1003–1010

    Google Scholar 

  • Melguizo C, Prados J, González B et al (2012) MGMT promoter methylation status and MGMT and CD133 immunohistochemical expression as prognostic markers in glioblastoma patients treated with temozolomide plus radiotherapy. J Transl Med 17(10):250

    Article  Google Scholar 

  • Munoz JL, Bliss SA, Greco SJ et al (2013) Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol Ther Nucleic Acids 1(2):e126

    Article  Google Scholar 

  • Nakano I, Kornblum HI (2006) Brain tumor stem cells. Pediatr Res 59(4 Pt 2):54R–58R

    Article  PubMed  Google Scholar 

  • Nishida N, Yamashita S, Mimori K et al (2012) MicroRNA-10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells. Ann Surg Oncol 19(9):3065–3071

    Article  PubMed  Google Scholar 

  • Nobusawa S, Watanabe T, Kleihues P et al (2009) IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 15(19):6002–6007

    Article  CAS  PubMed  Google Scholar 

  • Okamoto OK, Oba-Shinjo SM, Lopes L et al (2007) Expression of HOXC9 and E2F2 are up-regulated in CD 133+ cells isolated from human astrocytomas and associated with transformation of human astrocytes. Biochim Biophys Acta 1769:437–442

    Article  CAS  PubMed  Google Scholar 

  • Oliver TG, Wechsler-Reya RJ (2004) Getting at the root and stem of brain tumors. Neuron 42:885–888

    Article  CAS  PubMed  Google Scholar 

  • Persano L, Pistollato F, Rampazzo E et al (2012) BMP2 sensitizes glioblastoma stem-like cells to Temozolomide by affecting HIF-1α stability and MGMT expression. Cell Death Dis 18(3):e412

    Article  Google Scholar 

  • Pistollato F, Abbadi S, Rampazzo E et al (2010) Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 28:851–862

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan V, Kushwaha D, Koay DC et al (2011) Post-transcriptional regulation of O(6)-methylguanine-DNA methyltransferase MGMT in glioblastomas. Cancer Biomark 10(3–4):185–193

    CAS  PubMed  Google Scholar 

  • Rani SB, Rathod SS, Karthik S et al (2013) MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells. Neuro Oncol 15(10):1302–1316

    Article  CAS  PubMed  Google Scholar 

  • Revelos K, Petraki C, Gregorakis A et al (2005) Immunohistochemical expression of Bcl2 is an independent predictor of time-to-biochemical failure in patients with clinically localized prostate cancer following radical prostatectomy. Anticancer Res 25(4):3123–3133

    CAS  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  CAS  PubMed  Google Scholar 

  • Rorke LB (1997) Pathologic diagnosis as the gold standard. Cancer 79:665–667

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Martin M (2008) Brain tumour stem cells: implications for cancer therapy and regenerative medicine. Curr Stem Cell Res Ther 3:197–207

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Sunayama J, Matsuda K et al (2011) MEK-ERK signaling dictates DNA-repair gene MGMT expression and temozolomide resistance of stem-like glioblastoma cells via the MDM2-p53 axis. Stem Cells 29(12):1942–1951

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Cheng Z, Zhang J et al (2008) hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res 1236:185–193

    Article  CAS  PubMed  Google Scholar 

  • Shi M, Du L, Liu D et al (2012) Glucocorticoid regulation of a novel HPV-E6-p53-miR-145 pathway modulates invasion and therapy resistance of cervical cancer cells. J Pathol 228(2):148–157

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  • Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466

    Article  CAS  PubMed  Google Scholar 

  • Swingler TE, Wheeler G, Carmont V et al (2012) The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum 64(6):1909–1919

    Article  CAS  PubMed  Google Scholar 

  • Sze CI, Su WP, Chiang MF et al (2013) Assessing current therapeutic approaches to decode potential resistance mechanisms in glioblastomas. Front Oncol 19(3):59

    Google Scholar 

  • Takwi AA, Wang YM, Wu J et al (2013) miR-137 regulates the constitutive androstane receptor and modulates doxorubicin sensitivity in parental and doxorubicin-resistant neuroblastoma cells. Oncogene. doi:10.1038/onc.2013.330

    PubMed  Google Scholar 

  • Tunca B, Tezcan G, Cecener G et al (2012) Olea europaea leaf extract alters microRNA expression in human glioblastoma cells. J Cancer Res Clin Oncol 138(11):1831–1844

    Article  CAS  PubMed  Google Scholar 

  • Ujifuku K, Mitsutake N, Takakura S et al (2010) miR-195, miR-455-3p and miR-10a(*) are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett 296(2):241–248

    Article  CAS  PubMed  Google Scholar 

  • Valledor AF, Arpa L, Sanchez-Tillo E et al (2008) IFN-{gamma}-mediated inhibition of MAPK phosphatase expression results in prolonged MAPK activity in response to M-CSF and inhibition of proliferation. Blood 112(8):3274–3282

    Article  CAS  PubMed  Google Scholar 

  • Visone R, Veronese A, Rassenti LZ et al (2011) miR-181b is a biomarker of disease progression in chronic lymphocytic leukemia. Blood 118(11):3072–3079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang B, Hsu SH, Majumder S et al (2010) TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 29(12):1787–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang B, Li W, Guo K et al (2012) miR-181b promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients. Biochem Biophys Res Commun 421(1):4–8

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Sai K, Chen FR et al (2013) miR-181b modulates glioma cell sensitivity to temozolomide by targeting MEK1. Cancer Chemother Pharmacol 72(1):147–158

    Article  CAS  PubMed  Google Scholar 

  • Weller M, Pfister SM, Wick W et al (2013) Molecular neuro-oncology in clinical practice: a new horizon. Lancet Oncol 14(9):e370–e379

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Pew T, Zou M et al (2005) Glucocorticoid receptor-induced MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. J Biol Chem 280(6):4117–4124

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Sato E, Amagasaki K et al (2006) Participation of an abnormality in the transforming growth factor-beta signaling pathway in resistance of malignant glioma cells to growth inhibition induced by that factor. J Neurosurg 105:119–128

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Pickard K, Jenei V et al (2013) miR-153 supports colorectal cancer progression via pleiotropic effects that enhance invasion and chemotherapeutic resistance. Cancer Res 73(21):6435–6447

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Deng Y, Liu Y et al (2013) MicroRNA-153 is tumor suppressive in glioblastoma stem cells. Mol Biol Rep 40(4):2789–2798

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Shan X, Wang T et al (2010) miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer 127(11):2520–2529

    Article  CAS  PubMed  Google Scholar 

  • Zhu DX, Zhu W, Fang C et al (2012) miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis 33(7):1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Li Y, Shen H et al (2013) miR-137 restoration sensitizes multidrug-resistant MCF-7/ADM cells to anticancer agents by targeting YB-1. Acta Biochim Biophys Sin (Shanghai) 45(2):80–86

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Scientific Research Projects Foundation (BAP) of the Uludag University of Turkey [Project No. OUAP (T)-2012/17].

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berrin Tunca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tezcan, G., Tunca, B., Bekar, A. et al. microRNA Expression Pattern Modulates Temozolomide Response in GBM Tumors with Cancer Stem Cells. Cell Mol Neurobiol 34, 679–692 (2014). https://doi.org/10.1007/s10571-014-0050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0050-0

Keywords

Navigation