Skip to main content

Advertisement

Log in

miR-181b modulates glioma cell sensitivity to temozolomide by targeting MEK1

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Recent studies have reported that miR-181b contributes to chemoresistance in several cancer types and functions as a tumor suppressor in glioma. This study aimed to explore whether miR-181b could enhance the chemotherapeutic effect of temozolomide in glioma cells and sought to identify the candidate target genes which mediated the effect.

Methods

Using 48 frozen samples from patients with glioma who had received in vitro chemosensitivity assay, we measured MGMT promoter methylation status by methylation-specific PCR and miR-181b expression by qRT-PCR. Then, miR-181b expression level was correlated with temozolomide IC50 and MGMT promoter methylation status. To investigate the mechanism of miR-181b-induced chemosensitivity, assays were performed using stable miR-181b-expressing transfectants of glioma cell lines created by a lentiviral system.

Results

Glioma cells rich in miR-181b were more sensitive to temozolomide. miR-181b expression was not correlated with MGMT promoter methylation status. miR-181b combined with temozolomide enhanced glioma cell sensitivity and apoptosis. The effects were through posttranscriptional repression of MEK1. We demonstrated that miR-181b bound directly to the 3′ untranslated regions of MEK1, thus reducing both the mRNA and protein levels of MEK1. Additionally, knockdown of MEK1 using small interfering RNA resulted in effects similar to ectopic miR-181b expression, whereas enforced expression of MEK1 lacking the 3′ untranslated regions abrogated the effects. Finally, inverse correlation between miR-181b and MEK1 was established in glioma specimens.

Conclusion

miR-181b independently predicted chemoresponse to temozolomide and enhanced temozolomide sensitivity via MEK1 downregulation. A combination of miR-181b and temozolomide may be an effective therapeutic strategy for gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi:352/10/987

    Article  PubMed  CAS  Google Scholar 

  2. Athanassiou H, Synodinou M, Maragoudakis E, Paraskevaidis M, Verigos C, Misailidou D, Antonadou D, Saris G, Beroukas K, Karageorgis P (2005) Randomized phase II study of temozolomide and radiotherapy compared with radiotherapy alone in newly diagnosed glioblastoma multiforme. J Clin Oncol 23:2372–2377. doi:23/10/2372

    Article  PubMed  CAS  Google Scholar 

  3. Pan Q, Yang XJ, Wang HM, Dong XT, Wang W, Li Y, Li JM (2012) Chemoresistance to temozolomide in human glioma cell line U251 is associated with increased activity of O6-methylguanine-DNA methyltransferase and can be overcome by metronomic temozolomide regimen. Cell Biochem Biophys 62:185–191. doi:10.1007/s12013-011-9280-7

    Article  PubMed  CAS  Google Scholar 

  4. Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, Pogribny IP (2008) Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 7:2152–2159. doi:10.1158/1535-7163

    Article  PubMed  CAS  Google Scholar 

  5. Liang Z, Wu H, Xia J, Li Y, Zhang Y, Huang K, Wagar N, Yoon Y, Cho HT, Scala S, Shim H (2010) Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol 79:817–824. doi:10.1016/j.bcp.2009.10.017S0006-2952(09)00932-0

    Article  PubMed  CAS  Google Scholar 

  6. Pogribny IP, Filkowski JN, Tryndyak VP, Golubov A, Shpyleva SI, Kovalchuk O (2010) Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int J Cancer 127:1785–1794. doi:10.1002/ijc.25191

    Article  PubMed  CAS  Google Scholar 

  7. Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, Coppola D, Cheng JQ (2008) MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283:31079–31086. doi:10.1074/jbc.M806041200

    Article  PubMed  CAS  Google Scholar 

  8. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi:S0092867404000455

    Article  PubMed  CAS  Google Scholar 

  9. Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z, You Y (2008) hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res 1236:185–193. doi:10.1016/j.brainres.2008.07.085S0006-8993(08)01836-2

    Article  PubMed  CAS  Google Scholar 

  10. Zhi F, Chen X, Wang S, Xia X, Shi Y, Guan W, Shao N, Qu H, Yang C, Zhang Y, Wang Q, Wang R, Zen K, Zhang CY, Zhang J, Yang Y (2010) The use of hsa-miR-21, hsa-miR-181b and hsa-miR-106a as prognostic indicators of astrocytoma. Eur J Cancer 46:1640–1649. doi:10.1016/j.ejca.2010.02.003S0959-8049(10)00106-1

    Article  PubMed  CAS  Google Scholar 

  11. Slaby O, Lakomy R, Fadrus P, Hrstka R, Kren L, Lzicarova E, Smrcka M, Svoboda M, Dolezalova H, Novakova J, Valik D, Vyzula R, Michalek J (2010) MicroRNA-181 family predicts response to concomitant chemoradiotherapy with temozolomide in glioblastoma patients. Neoplasma 57:264–269

    Article  PubMed  CAS  Google Scholar 

  12. Conti A, Aguennouz M, La Torre D, Tomasello C, Cardali S, Angileri FF, Maio F, Cama A, Germano A, Vita G, Tomasello F (2009) miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol 93(3):325–332. doi:10.1007/s11060-009-9797-413

    Article  PubMed  CAS  Google Scholar 

  13. Zhu W, Shan X, Wang T, Shu Y, Liu P (2010) miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer 127:2520–2529. doi:10.1002/ijc.25260

    Article  PubMed  CAS  Google Scholar 

  14. Nakajima G, Hayashi K, Xi Y, Kudo K, Uchida K, Takasaki K, Yamamoto M, Ju J (2006) Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics 3:317–324

    PubMed  CAS  Google Scholar 

  15. Wang B, Hsu SH, Majumder S, Kutay H, Huang W, Jacob ST, Ghoshal K (2010) TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 29:1787–1797. doi:10.1038/onc.2009.468

    Article  PubMed  CAS  Google Scholar 

  16. Xin F, Li M, Balch C, Thomson M, Fan M, Liu Y, Hammond SM, Kim S, Nephew KP (2009) Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics 25:430–434. doi:10.1093/bioinformatics/btn646

    Article  PubMed  CAS  Google Scholar 

  17. Chen GQ, Zhao ZW, Zhou HY, Liu YJ, Yang HJ (2010) Systematic analysis of microRNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin. Med Oncol 27:406–415. doi:10.1007/s12032-009-9225-9

    Article  PubMed  CAS  Google Scholar 

  18. Lu Y, Roy S, Nuovo G, Ramaswamy B, Miller T, Shapiro C, Jacob ST, Majumder S (2011) Anti-microRNA-222 (anti-miR-222) and -181B suppress growth of tamoxifen-resistant xenografts in mouse by targeting TIMP3 protein and modulating mitogenic signal. J Biol Chem 286:42292–42302. doi:10.1074/jbc.M111.270926

    Article  PubMed  CAS  Google Scholar 

  19. Fabbri M, Garzon R, Andreeff M, Kantarjian HM, Garcia-Manero G, Calin GA (2008) MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia 22:1095–1105. doi:10.1038/leu.2008.30

    Article  PubMed  CAS  Google Scholar 

  20. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi:10.1016/j.cell.2009.01.002S0092-8674(09)00008-7

    Article  PubMed  CAS  Google Scholar 

  21. Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G, Ferlini C (2008) Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol 111:478–486. doi:10.1016/j.ygyno.2008.08.017S0090-8258(08)00645-8

    Article  PubMed  CAS  Google Scholar 

  22. Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, Deguchi T, Ito M (2008) Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun 377:114–119. doi:10.1016/j.bbrc.2008.09.086S0006-291X(08)01860-3

    Article  PubMed  CAS  Google Scholar 

  23. Brassesco MS, Valera ET, Neder L, Castro-Gamero AM, Arruda D, Machado HR, Sakamoto-Hojo ET, Tone LG (2009) Polyploidy in atypical grade II choroid plexus papilloma of the posterior fossa. Neuropathology 29:293–298. doi:10.1111/j.1440-1789.2008.00949.xNEU949

    Article  PubMed  Google Scholar 

  24. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826

    Article  PubMed  CAS  Google Scholar 

  25. Kim JT, Kim JS, Ko KW, Kong DS, Kang CM, Kim MH, Son MJ, Song HS, Shin HJ, Lee DS, Eoh W, Nam DH (2006) Metronomic treatment of temozolomide inhibits tumor cell growth through reduction of angiogenesis and augmentation of apoptosis in orthotopic models of gliomas. Oncol Rep 16:33–39

    PubMed  Google Scholar 

  26. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354. doi:10.1056/NEJM200011093431901

    Article  PubMed  CAS  Google Scholar 

  27. Hegi ME, Diserens AC, Godard S, Dietrich PY, Regli L, Ostermann S, Otten P, Van Melle G, de Tribolet N, Stupp R (2004) Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 10:1871–1874

    Article  PubMed  CAS  Google Scholar 

  28. Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, Mehta MP, Gilbert MR (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26:4189–4199. doi:10.1200/JCO.2007.11.596426/25/4189

    Article  PubMed  CAS  Google Scholar 

  29. Liu L, Markowitz S, Gerson SL (1996) Mismatch repair mutations override alkyltransferase in conferring resistance to temozolomide but not to 1,3-bis(2-chloroethyl)nitrosourea. Cancer Res 56:5375–5379

    PubMed  CAS  Google Scholar 

  30. Qian X, LaRochelle WJ, Ara G, Wu F, Petersen KD, Thougaard A, Sehested M, Lichenstein HS, Jeffers M (2006) Activity of PXD101, a histone deacetylase inhibitor, in preclinical ovarian cancer studies. Mol Cancer Ther 5:2086–2095. doi:5/8/2086

    Article  PubMed  CAS  Google Scholar 

  31. Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130:2113–2129. doi:S0016-5085(06)00736-0

    Article  PubMed  CAS  Google Scholar 

  32. Weeraratne SD, Amani V, Neiss A, Teider N, Scott DK, Pomeroy SL, Cho YJ (2011) miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma. Neuro Oncol 13:165–175. doi:10.1093/neuonc/noq179

    Article  PubMed  CAS  Google Scholar 

  33. Trang P, Weidhaas JB, Slack FJ (2008) MicroRNAs as potential cancer therapeutics. Oncogene 27(Suppl 2):S52–S57. doi:10.1038/onc.2009.353

    Article  PubMed  CAS  Google Scholar 

  34. Li Y, Li W, Yang Y, Lu Y, He C, Hu G, Liu H, Chen J, He J, Yu H (2009) MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res 1286:13–18. doi:10.1016/j.brainres.2009.06.053S0006-8993(09)01269-4

    Article  PubMed  CAS  Google Scholar 

  35. Wu W, Pew T, Zou M, Pang D, Conzen SD (2005) Glucocorticoid receptor-induced MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. J Biol Chem 280:4117–4124. doi:M411200200

    Article  PubMed  CAS  Google Scholar 

  36. Valledor AF, Arpa L, Sanchez-Tillo E, Comalada M, Casals C, Xaus J, Caelles C, Lloberas J, Celada A (2008) IFN-{gamma}-mediated inhibition of MAPK phosphatase expression results in prolonged MAPK activity in response to M-CSF and inhibition of proliferation. Blood 112:3274–3282. doi:10.1182/blood-2007-11-123604

    Article  PubMed  CAS  Google Scholar 

  37. Hirata H, Hinoda Y, Ueno K, Shahryari V, Tabatabai ZL, Dahiya R (2012) MicroRNA-1826 targets VEGFC, beta-catenin (CTNNB1) and MEK1 (MAP2K1) in human bladder cancer. Carcinogenesis 33:41–48. doi:10.1093/carcin/bgr239

    Article  PubMed  CAS  Google Scholar 

  38. Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K, Collins VP (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68:8673–8677. doi:10.1158/0008-5472

    Article  PubMed  CAS  Google Scholar 

  39. Balmanno K, Cook SJ (2009) Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ 16:368–377. doi:10.1038/cdd.2008.148

    Article  PubMed  CAS  Google Scholar 

  40. Sato A, Sunayama J, Matsuda K, Seino S, Suzuki K, Watanabe E, Tachibana K, Tomiyama A, Kayama T, Kitanaka C (2011) MEK-ERK signaling dictates DNA-repair gene MGMT expression and temozolomide resistance of stem-like glioblastoma cells via the MDM2-p53 axis. Stem Cells 29:1942–1951. doi:10.1002/stem.753

    Article  PubMed  CAS  Google Scholar 

  41. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310. doi:10.1038/sj.onc.1210422

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yonggao Mou for his help in glioma sample collection and Yanchang Sun for technical support. This study was supported by grants from National Natural Science Foundation of China (No. 30973478).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-ping Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Sai, K., Chen, Fr. et al. miR-181b modulates glioma cell sensitivity to temozolomide by targeting MEK1. Cancer Chemother Pharmacol 72, 147–158 (2013). https://doi.org/10.1007/s00280-013-2180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2180-3

Keywords

Navigation