Skip to main content

Advertisement

Log in

The Involvement of MicroRNAs in Major Depression, Suicidal Behavior, and Related Disorders: A Focus on miR-185 and miR-491-3p

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Major depressive disorders are common and disabling conditions associated with significant psychosocial impairment and suicide risk. At least 3–4 % of all depressive individuals die by suicide. Evidence suggests that small non-coding RNAs, in particular microRNAs (miRNAs), play a critical role in major affective disorders as well as suicide. We performed a detailed review of the current literature on miRNAs and their targets in major depression and related disorders as well as suicidal behavior, with a specific focus on miR-185 and miR-491-3p, which have been suggested to participate in the pathogenesis of major depression and/or suicide. miRNAs play a fundamental role in the development of the brain. Several miRNAs are reported to influence neuronal and circuit formation by negatively regulating gene expression. Global miRNA reduced expression was found in the prefrontal cortex of depressed suicide completers when compared to that of nonpsychiatric controls who died of other causes. One particular miRNA, miR-185, was reported to regulate TrkB-T1, which has been associated with suicidal behavior upon truncation. Furthermore, cAMP response element-binding protein–brain-derived neurotrophic factor pathways may regulate, through miRNAs, the homeostasis of neural and synaptic pathways playing a crucial role in major depression. miRNAs have gained attention as key players involved in nervous system development, physiology, and disease. Further evidence is needed to clarify the exact role that miRNAs play in major depression and related disorders and suicidal behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelmohsen K, Hutchison ER, Lee EK, Kuwano Y, Kim MM, Masuda, Srikantan S, Subaran SS, Marasa BS, Mattson MP, Gorospe M (2010) miR- 375 inhibits differentiation of neurites by lowering HuD levels. Mol Cell Biol 30:4197–4210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alon S, Mor E, Vigneault F, Church GM, Locatelli F, Galeano F, Gallo A, Shomron N, Eisenberg E (2012) Systematic identification of edited microRNAs in the human brain. Genome Res 22:1533–1540

    CAS  PubMed  Google Scholar 

  • Andersen I, Thielen K, Bech P, Nygaard E, Diderichsen F (2011) Increasing prevalence of depression from 2000 to 2006. Scand J Public Health 39:857–863

    PubMed  Google Scholar 

  • Bassett AS, Marshall CR, Lionel AC, Chow EW, Scherer SW (2008) Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome. Hum Mol Genet 17:4045–4053

    CAS  PubMed  Google Scholar 

  • Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O (2010) miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science 329:1537–1541

    CAS  PubMed  Google Scholar 

  • Bessa JM, Ferreira D, Melo I, Marques F, Cerqueira JJ, Palha JA, Almeida OF, Sousa N (2009) The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry 14:764–773

    CAS  PubMed  Google Scholar 

  • Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ et al (2008) Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17:1156–1168

    CAS  PubMed  Google Scholar 

  • Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ (2010) Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 15:1176–1189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bocchio-Chiavetto L, Maffioletti E, Bettinsoli P, Giovannini C, Bignotti S, Tardito D, Corrada D, Milanesi L, Gennarelli M (2013) Blood microRNA changes in depressed patients during antidepressant treatment. Eur Neuropsychopharmacol 23:602–611

    CAS  PubMed  Google Scholar 

  • Bond AM, Vangompel MJ, Sametsky EA, Clark MF, Savage JC, Disterhoft JF, Kohtz JD (2009) Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci 12:1020–1027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brunoni AR, Lopes M, Fregni F (2008) A systematic review and meta-analysis of clinical studies on depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol 11:1169–1180

    CAS  PubMed  Google Scholar 

  • Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    CAS  PubMed  Google Scholar 

  • Castrén E, Rantamäki T (2008) Neurotrophins in depression and antidepressant effects. Novartis Found Symp 289:43–52

    PubMed  Google Scholar 

  • Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103:2422–2427

    CAS  PubMed  Google Scholar 

  • Cowansage KK, LeDoux JE, Monfils MH (2010) Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Curr Mol Pharmacol 3:12–29

    CAS  PubMed  Google Scholar 

  • Drury GL, Di Marco S, Dormoy-Raclet V, Desbarats J, Gallouzi IE (2010) FasL expression in activated T lymphocytes involves HuR-mediated stabilization. J Biol Chem 285:31130–31138

    CAS  PubMed  Google Scholar 

  • Duman RS (2004) Introduction: theories of depression—from monoamines to neuroplasticity. In: Olie JP, Costa e Silva JA, Macher JP (eds) Neuroplasticity: a new approach to the pathophysiology of depression. Science Press Ltd, London, pp 1–11

    Google Scholar 

  • Dwivedi Y (2011) Evidence demonstrating role of microRNAs in the etiopathology of major depression. J Chem Neuroanat 42:142–156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dwivedi Y, Pandey GN (2008) Adenylyl cyclase-cyclicAMP signaling in mood disorders: role of the crucial phosphorylating enzyme protein kinase A. Neuropsychiatr Dis Treat 4:161–176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dwivedi Y, Rao JS, Rizavi HS, Kotowski J, Conley RR, Roberts RC, Tamminga CA, Pandey GN (2003) Abnormal expression and functional characteristics of cyclic adenosine monophosphate response element binding protein in postmortem brain of suicide subjects. Arch Gen Psychiatry 60:273–282

    CAS  PubMed  Google Scholar 

  • Dwivedi Y, Mondal AC, Shukla PK, Rizavi HS, Lyons J (2004) Altered protein kinase a in brain of learned helpless rats: effects of acute and repeated stress. Biol Psychiatry 56:30–40

    CAS  PubMed  Google Scholar 

  • Dwivedi Y, Mondal AC, Payappagoudar GV, Rizavi HS (2005a) Differential regulation of serotonin (5HT)2A receptor mRNA and protein levels after single and repeated stress in rat brain: role in learned helplessness behavior. Neuropharmacology 48:204–214

    CAS  PubMed  Google Scholar 

  • Dwivedi Y, Mondal AC, Rizavi HS, Conley RR (2005b) Suicide brain is associated with decreased expression of neurotrophins. Biol Psychiatry 58:315–324

    CAS  PubMed  Google Scholar 

  • Dwivedi Y, Mondal AC, Rizavi HS, Shukla PK, Pandey GN (2005c) Single and repeated stress-induced modulation of phospholipase C catalytic activity and expression: role in LH behavior. Neuropsychopharmacology 30:473–483

    CAS  PubMed  Google Scholar 

  • Dwivedi Y, Mondal AC, Rizavi HS, Faludi G, Palkovits M, Sarosi A, Conley RR, Pandey GN (2006) Differential and brain region-specific regulation of Rap-1 and Epac in depressed suicide victims. Arch Gen Psychiatry 63:639–648

    CAS  PubMed  Google Scholar 

  • Dwivedi Y, Rizavi HS, Zhang H, Roberts RC, Conley RR, Pandey GN (2009a) Aberrant extracellular signal-regulated kinase (ERK)1/2 signaling in suicide brain: role of ERK kinase 1 (MEK1). Int J Neuropsychopharmacol 12:1337–1354

    CAS  PubMed  Google Scholar 

  • Dwivedi Y, Rizavi H, Zhang H, Mondal AC, Roberts RC, Conley RR, Pandey GN (2009b) Neurotrophin receptor activation and expression in human postmortem brain: effect of suicide. Biol Psychiatry 65:319–328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    CAS  PubMed  Google Scholar 

  • Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460:587–591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fiore R, Siegel G, Schratt G (2008) MicroRNA function in neuronal development, plasticity and disease. Biochim Biophys Acta 1779:471–478

    CAS  PubMed  Google Scholar 

  • Gao J, Wang WY, Mao YW, Gräff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109

    CAS  PubMed Central  PubMed  Google Scholar 

  • George AD, Tenenbaum SA (2006) MicroRNA modulation of RNA-binding protein regulatory elements. RNA Biol 3:57–59

    CAS  PubMed  Google Scholar 

  • Guo AY, Sun J, Jia P, Zhao Z (2010) A novel microRNA and transcription factor mediated regulatory network in schizophrenia. BMC Syst Biol 4:10

    PubMed Central  PubMed  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134

    CAS  PubMed  Google Scholar 

  • Huang YW, Ruiz CR, Eyler EC, Lin K, Meffert MK (2012) Dual regulation of miRNA biogenesis generates target specificity in neurotrophin-induced protein synthesis. Cell 148:933–946

    CAS  PubMed  Google Scholar 

  • Hunsberger JG, Austin DR, Chen G, Manji HK (2009) MicroRNAs in mental health: from biological underpinnings to potential therapies. Neuromolecular Med 11:173–182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hüttenhofer A, Schattner P, Polacek N (2005) Non-coding RNAs: hope or hype? Trends Genet 21:289–297

    PubMed  Google Scholar 

  • Impey S, Davare M, Lasiek A, Fortin D, Ando H, Varlamova O, Obrietan K, Soderling TR, Goodman RH, Wayman GA (2010) An activity-induced micro- RNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 43:146–156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Innamorati M, Pompili M, Gonda X, Amore M, Serafini G, Niolu C, Lester D, Rutz W, Rihmer Z, Girardi P (2011) Psychometric properties of the Gotland Scale for depression in Italian psychiatric inpatients and its utility in the prediction of suicide risk. J Affect Disord 132:99–103

    PubMed  Google Scholar 

  • Isakov O, Ronen R, Kovarsky J, Gabay A, Gan I, Modai S, Shomron N (2012) Novel insight into the non-coding repertoire through deep sequencing analysis. Nucleic Acids Res 40:e86

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jain R, Devine T, George AD, Chittur SV, Baroni TE, Penalva LO, Tenenbaum SA (2011) RIP-chip analysis: RNA-binding protein immunoprecipitation-microarray (chip) profiling. Methods Mol Biol 703:247–263

    CAS  PubMed  Google Scholar 

  • Jensen KP, Covault J, Conner TS, Tennen H, Kranzler HR, Furneaux HM (2009) A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors. Mol Psychiatry 14:381–389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kagias K, Nehammer C, Pocock R (2012) Neuronal responses to physiological stress. Front Genet 3:222

    PubMed Central  PubMed  Google Scholar 

  • Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH, Wilson SW (2007) MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 8:R173

    PubMed Central  PubMed  Google Scholar 

  • Kawashima H, Numakawa T, Kumamaru E, Adachi N, Mizuno H, Ninomiya M, Kunugi H, Hashido K (2010) Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience 165:1301–1311

    CAS  PubMed  Google Scholar 

  • Kessler RC, Birnbaum H, Bromet E, Hwang I, Sampson N, Shahly V (2010) Age differences in major depression: results from the National Comorbidity Survey Replication (NCS-R). Psychol Med 40:225–237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim HW, Rapoport SI, Rao JS (2010) Altered expression of apoptotic factors and synaptic markers in postmortem brain from bipolar disorder patients. Neurobiol Dis 37:596–603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein ME, Lioy DT, Ma L, Impey S, Mandel G, Goodman RH (2007) Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci 10:1513–1514

    CAS  PubMed  Google Scholar 

  • Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7:911–920

    CAS  PubMed  Google Scholar 

  • Kozisek ME, Middlemas D, Bylund DB (2008) Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol Ther 117:30–51

    CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumamaru E, Numakawa T, Adachi N, Yagasaki Y, Izumi A, Niyaz M, Kudo M, Kunugi H (2008) Glucocorticoid prevents brain-derived neurotrophic factor mediated maturation of synaptic function in developing hippocampal neurons through reduction in the activity of mitogen-activated protein kinase. Mol Endocrinol 22:546–558

    CAS  PubMed  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee ST, Chu K, Jung KH, Kim JH, Huh JY, Yoon H, Park DK, Lim JY, Kim JM, Jeon D, Ryu H, Lee SK, Kim M, Roh JK (2012) miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol 72:269–277

    CAS  PubMed  Google Scholar 

  • Liu C, Zhao X (2009) MicroRNAs in adult and embryonic neurogenesis. Neuromolecular Med 11:141–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lugli G, Torvik VI, Larson J, Smalheiser NR (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem 106:650–661

    CAS  PubMed Central  PubMed  Google Scholar 

  • Machado-Vieira R, Salvadore G, DiazGranados N, Ibrahim L, Latov D, Wheeler-Castillo C, Baumann J, Henter ID, Zarate CA Jr (2010) New therapeutic targets for mood disorders. Sci World J 10:713–726

    CAS  Google Scholar 

  • Martí E, Pantano L, Bañez-Coronel M, Llorens F, Miñones-Moyano E, Porta S, Sumoy L, Ferrer I, Estivill X (2010) A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 38:7219–7235

    PubMed Central  PubMed  Google Scholar 

  • Maussion G, Yang J, Yerko V, Barker P, Mechawar N, Ernst C, Turecki G (2012) Regulation of a truncated form of tropomyosin-related kinase B (TrkB) by Hsa-miR-185* in frontal cortex of suicide completers. PLoS ONE 7:e39301

    CAS  PubMed Central  PubMed  Google Scholar 

  • McNeill E, Van Vactor D (2012) MicroRNAs Shape the Neuronal Landscape. Neuron 75:363–379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meerson A, Cacheaux L, Goosens KA, Sapolsky RM, Soreq H, Kaufer D (2010) Changes in brain MicroRNAs contribute to cholinergic stress reactions. J Mol Neurosci 40:47–55

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S (2011) A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet 17:3030–3042

    Google Scholar 

  • Michalak P (2006) RNA world: the dark matter of evolutionary genomics. J Evol Biol 19:1768–1774

    CAS  PubMed  Google Scholar 

  • Millan MJ (2011) MicroRNA in the regulation and expression of serotonergic transmission in the brain and other tissues. Curr Opin Pharmacol 11:11–22

    CAS  PubMed  Google Scholar 

  • Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217

    CAS  PubMed  Google Scholar 

  • miRBase (2012) Available from: the web address: http://www.mirbase.org/. Accessed 4 June 2013

  • Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68

    PubMed Central  PubMed  Google Scholar 

  • Mor E, Cabilly Y, Goldshmit Y, Zalts H, Modai S, Edry L, Elroy-Stein O, Shomron N (2011) Species-specific microRNA roles elucidated following astrocyte activation. Nucleic Acids Res 39:3710–3723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morag A, Pasmanik-Chor M, Oron-Karni V, Rehavi M, Stingl JC, Gurwitz D (2011) Genome-wide expression profiling of human lymphoblastoid cell lines identifies CHL1 as a putative SSRI antidepressant response biomarker. Pharmacogenomics 12:171–184

    CAS  PubMed  Google Scholar 

  • Mouillet-Richard S, Baudry A, Launay JM, Kellermann O (2012) MicroRNAs and depression. Neurobiol Dis 46:272–278

    CAS  PubMed  Google Scholar 

  • Mukai J, Dhilla A, Drew LJ, Stark KL, Cao L, MacDermott AB, Karayiorgou M, Gogos JA (2008) Palmitoylationdependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci 11:1302–1310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD + -dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Numakawa T, Kumamaru E, Adachi N, Yagasaki Y, Izumi A, Kunugi H (2009) Glucocorticoid receptor interaction with TrkB promotes BDNF-triggered PLCgamma signaling for glutamate release via a glutamate transporter. Proc Natl Acad Sci USA 106:647–652

    CAS  PubMed  Google Scholar 

  • O’Connor RM, Dinan TG, Cryan JF (2012) Little things on which happiness depends: microRNAs as novel therapeutic targets for the treatment of anxiety and depression. Mol Psychiatry 17:359–376

    PubMed  Google Scholar 

  • Ohira K, Hayashi M (2009) A new aspect of the TrkB signaling pathway in neural plasticity. Curr Neuropharmacol 7:276–285

    CAS  PubMed  Google Scholar 

  • Otto SJ, McCorkle SR, Hover J, Conaco C, Han JJ, Impey S, Yochum GS, Dunn JJ, Goodman RH, Mandel G (2007) A new binding motif for the transcriptional repressor REST uncovers large gene networks devoted to neuronal functions. J Neurosci 27:6729–6739

    CAS  PubMed  Google Scholar 

  • Oved K, Morag A, Pasmanik-Chor M, Oron-Karni V, Shomron N, Rehavi M, Stingl JC, Gurwitz D (2012) Genome-wide miRNA expression profiling of human lymphoblastoid cell lines identifies tentative SSRI antidepressant response biomarkers. Pharmacogenomics 13:1129–1139

    CAS  PubMed  Google Scholar 

  • Ovtscharoff W Jr, Braun K (2001) Maternal separation and social isolation modulate the postnatal development of synaptic composition in the infralimbic cortex of Octodon degus. Neuroscience 104:33–40

    CAS  PubMed  Google Scholar 

  • Pandey GN, Dwivedi Y, Pandey SC, Conley RR, Roberts RC, Tamminga CA (1997) Protein kinase C in the postmortem brain of teenage suicide victims. Neurosci Lett 228:111–114

    CAS  PubMed  Google Scholar 

  • Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 49:391–404

    CAS  PubMed  Google Scholar 

  • Pascual R, Zamora-León P, Catalán-Ahumada M, Valero-Cabré A (2007) Early social isolation decreases the expression of calbindin D-28 k and dendritic branching in the medial prefrontal cortex of the rat. Int J Neurosci 117:465–476

    PubMed  Google Scholar 

  • Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, Parker JS, Jin J, Hammond SM (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 8:R27

    PubMed Central  PubMed  Google Scholar 

  • Pompili M, Rihmer Z, Akiskal H, Amore M, Gonda X, Innamorati M, Lester D, Perugi G, Serafini G, Telesforo L, Tatarelli R, Girardi P (2012) Temperaments mediate suicide risk and psychopathology among patients with bipolar disorders. Compr Psychiatry 53:280–285

    PubMed  Google Scholar 

  • Presutti C, Rosati J, Vincenti S, Nasi S (2006) Non coding RNA and brain. BMC Neurosci Suppl 1:S5

    Google Scholar 

  • International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752

    Google Scholar 

  • Qureshi IA, Mehler MF (2011) Non-coding RNA networks underlying cognitive disorders across the lifespan. Trends Mol Med 17:337–346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rajasethupathy P, Fiumara F, Sheridan R, Betel D, Puthanveettil SV, Russo JJ, Sander C, Tuschl T, Kandel E (2009) Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron 63:803–817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Remenyi J, Hunter CJ, Cole C, Ando H, Impey S, Monk CE, Martin KJ, Barton GJ, Hutvagner G, Arthur JS (2010) Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem J 428:281–291

    CAS  PubMed  Google Scholar 

  • Rinaldi A, Vincenti S, De Vito F, Bozzoni I, Oliverio A, Presutti C, Fragapane P, Mele A (2010) Stress induces region specific alterations in microRNAs expression in mice. Behav Brain Res 208:265–269

    CAS  PubMed  Google Scholar 

  • Rogaev EI (2005) Small RNAs in human brain development and disorders. Biochemistry (Mosc) 70:1404–1407

    CAS  Google Scholar 

  • Sairanen M, O’Leary OF, Knuuttila JE, Castren E (2007) Chronic antidepressant treatment selectively increases expression of plasticity-related proteins in the hippocampus and medial prefrontal cortex of the rat. Neuroscience 144:368–374

    CAS  PubMed  Google Scholar 

  • Saugstad JA (2010) MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. J Cereb Blood Flow Metab 30:1564–1576

    CAS  PubMed  Google Scholar 

  • Saus E, Brunet A, Armengol L, Alonso P, Crespo JM, Fernández-Aranda F, Guitart M, Martín-Santos R, Menchón JM, Navinés R, Soria V, Torrens M, Urretavizcaya M, Vallès V, Gratacòs M, Estivill X (2010) Comprehensive copy number variant (CNV) analysis of neuronal pathways genes in psychiatric disorders identifies rare variants within patients. J Psychiatr Res 44:971–978

    PubMed  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–439

    CAS  PubMed  Google Scholar 

  • Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13

    PubMed Central  PubMed  Google Scholar 

  • Serafini G, Pompili M, Innamorati M, Giordano G, Tatarelli R, Lester D, Girardi P, Dwivedi Y (2011) Glycosides, depression and suicidal behaviour: the role of glycoside-linked proteins. Molecules 16:2688–2713

    CAS  PubMed  Google Scholar 

  • Serafini G, Pompili M, Innamorati M, Giordano G, Montebovi F, Sher L, Dwivedi Y, Girardi P (2012) The role of microRNAs in synaptic plasticity, major affective disorders and suicidal behavior. Neurosci Res 73:179–190

    CAS  PubMed  Google Scholar 

  • Serafini G, Pompili M, Innamorati M, Dwivedi Y, Brahmachari G, Girardi P (2013a) Pharmacological properties of glutamatergic drugs targeting NMDA receptors and their application in major depression. Curr Pharm Des 19:1898–1922

    CAS  PubMed  Google Scholar 

  • Serafini G, Pompili M, Innamorati M, Giordano G, Dwivedi Y, Shomron N, Girardi P (2013b) MicroRNAs, major affective disorders and suicidal behaviour. In: Johnson JC (ed) MicroRNA and Non-Coding RNA: technology, developments and applications, vol 2. Nova Science Publishers Inc, New York, pp 39–64

    Google Scholar 

  • Sethupathy P, Collins FS (2008) MicroRNA target site polymorphisms and human disease. Trends Genet 24:489–497

    CAS  PubMed  Google Scholar 

  • Shi SS, Shao SH, Yuan BP, Pan F, Li ZL (2010) Acute stress and chronic stress change brain-derived neurotrophic factor (BDNF) and tyrosine kinase-coupled receptor (TrkB) expression in both young and aged rat hippocampus. Yonsei Med J 51:661–671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smalheiser NR, Lugli G (2009) microRNA regulation of synaptic plasticity. Neuromolecular Med 11:133–140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smalheiser NR, Lugli G, Rizavi HS, Torvik VI, Turecki G, Dwivedi Y (2012) MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS ONE 7:e33201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smirnova L, Gräfe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477

    PubMed  Google Scholar 

  • Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R, Wan X, Pavlidis P, Mills AA, Karayiorgou M, Gogos JA (2008) Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 40:751–760

    CAS  PubMed  Google Scholar 

  • Stevenson CW, Marsden CA, Mason R (2008) Early life stress causes FG-7142- induced corticolimbic dysfunction in adulthood. Brain Res 1193:43–50

    CAS  PubMed  Google Scholar 

  • Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220:126–139

    CAS  PubMed  Google Scholar 

  • Uchida S, Hara K, Kobayashi A, Funato H, Hobara T, Otsuki K, Yamagata H, McEwen BS, Watanabe Y (2010) Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci 30:15007–15018

    CAS  PubMed  Google Scholar 

  • van der Laan S, Lachize SB, Vreugdenhil E, de Kloet ER, Meijer OC (2008) Nuclear receptor coregulators differentially modulate induction and glucocorticoid receptor-mediated repression of the corticotropin-releasing hormone gene. Endocrinology 149:725–732

    PubMed  Google Scholar 

  • Verdel A, Vavasseur A, Le Gorrec M, Touat-Todeschini L (2009) Common themes in siRNA-mediated epigenetic silencing pathways. Int J Dev Biol 53:245–257

    CAS  PubMed  Google Scholar 

  • Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA 102:16426–16431

    CAS  PubMed  Google Scholar 

  • Vreugdenhil E, Berezikov E (2009) Fine-tuning the brain: microRNAs. Front Neuroendocrinol 31:128–133

    PubMed  Google Scholar 

  • Vreugdenhil E, Verissimo CS, Mariman R, Kamphorst JT, Barbosa JS, Zweers T, Champagne DL, Schouten T, Meijer OC, de Kloet ER, Fitzsimons CP (2009) MicroRNA 18 and 124a down-regulate the glucocorticoid receptor: implications for glucocorticoid responsiveness in the brain. Endocrinology 150:2220–2228

    CAS  PubMed  Google Scholar 

  • Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, Marks D, Obrietan K, Soderling TR, Goodman RH, Impey S (2008) An activity regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA 105:9093–9098

    CAS  PubMed  Google Scholar 

  • World Health Organization (2012) Mental Health: suicide prevention. Geneva: World Health Organization. Available from: http://www.who.int/mental_health/prevention/en/. Accessed 11 June 2013

  • Wu J, Xie X (2006) Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol 7:R85

    PubMed Central  PubMed  Google Scholar 

  • Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–D110 (Database issue)

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Liu H, Li F, Sun N, Ren Y, Liu Z, Cao X, Wang Y, Liu P, Zhang K (2010) A polymorphism in the microRNA-30e precursor associated with major depressive disorder risk and P300 waveform. J Affect Disord 127:332–336

    CAS  PubMed  Google Scholar 

  • Yagasaki Y, Numakawa T, Kumamaru E, Hayashi T, Su TP, Kunugi H (2006) Chronic antidepressants potentiate via sigma-1 receptors the brain-derived neurotrophic factor-induced signaling for glutamate release. J Biol Chem 281:12941–12949

    CAS  PubMed  Google Scholar 

  • Zhou R, Yuan P, Wang Y, Hunsberger JG, Elkahloun A, Wei Y, Damschroder-Williams P, Du J, Chen G, Manji HK (2009) Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 34:1395–1405

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

None.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Serafini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serafini, G., Pompili, M., Hansen, K.F. et al. The Involvement of MicroRNAs in Major Depression, Suicidal Behavior, and Related Disorders: A Focus on miR-185 and miR-491-3p. Cell Mol Neurobiol 34, 17–30 (2014). https://doi.org/10.1007/s10571-013-9997-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9997-5

Keywords

Navigation