Skip to main content

microRNA Function and Dysregulation in Depression and Suicide

  • Chapter
  • First Online:
Suicide: Phenomenology and Neurobiology
  • 1578 Accesses

Abstract

Major depressive disorder and suicide are major public health concerns. Thus, there is a desperate need for identifying risk factors and noninvasive, reliable biomarkers that can be used for early detection of depression, suicidality, and treatment response. Recently, microRNAs (miRNAs) have emerged as an important class of small noncoding RNAs that by binding to 3′UTR of mRNAs, suppress the translation and/or stability of specific target genes. Since miRNAs show a highly regulated expression, they contribute in the development and maintenance of a specific transcriptome and thus have the unique ability to influence a wide range of physiological and disease phenotypes. Recent studies demonstrating involvement of miRNAs in several aspects of neural plasticity, stress response, and more direct studies in human postmortem brain and peripheral blood cells provide strong evidence that miRNAs not only can play a critical role in major depression and suicide pathogenesis but can also open new avenues for the development of therapeutic targets. In this chapter, these aspects have been discussed in a comprehensive manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aganova EA, Uranova NA (1992) Morphometric analysis of synaptic contacts in the anterior limbic cortex in the endogenous psychoses. Neurosci Behav Physiol 22:59–65

    PubMed  CAS  Google Scholar 

  • Ashraf SI, McLoon AL, Sclarsic SM, Kunes S (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124:191–205

    PubMed  CAS  Google Scholar 

  • Azuma-Mukai A, Oguri H, Mituyama T, Qian ZR, Asai K, Siomi H, Siomi MC (2008) Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Proc Natl Acad Sci USA 105:7964–7969

    PubMed  CAS  PubMed Central  Google Scholar 

  • Belzeaux R, Bergon A, Jeanjean V, Loriod B, Formisano-TrĂ©ziny C, Verrier L, Loundou A, Baumstarck-Barrau K, Boyer L, Gall V, Gabert J, Nguyen C, Azorin JM, Naudin J, Ibrahim EC (2012) Responder and nonresponder patients exhibit different peripheral transcriptional signatures during major depressive episode. Transl Psychiatry 2:e185

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bocchio-Chiavetto L, Maffioletti E, Bettinsoli P, Giovannini C, Bignotti S, Tardito D, Corrada D, Milanesi L, Gennarelli M (2013) Blood microRNA changes in depressed patients during antidepressant treatment. Eur Neuropsychopharmacol 23:602–611

    PubMed  CAS  Google Scholar 

  • Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10:141–148

    PubMed  CAS  Google Scholar 

  • Budhu A, Ji J, Wang XW (2010) The clinical potential of microRNAs. J Hematol Oncol 3:37

    PubMed  PubMed Central  Google Scholar 

  • Burke KC, Burke JD Jr, Rae DS, Regier DA (1991) Comparing age at onset of major depression and other psychiatric disorders by birth cohorts in five US community populations. Arch Gen Psychiatry 48:789–795

    PubMed  CAS  Google Scholar 

  • Cao MQ, Chen DH, Zhang CH, Wu ZZ (2007) Screening of specific microRNA in hippocampus of depression model rats and intervention effect of Chaihu Shugan San. Zhongguo Zhong Yao Za Zhi 38(10):1585–1589

    Google Scholar 

  • Cao MQ, Chen DH, Zhang CH, Wu ZZ (2013) Screening of specific microRNA in hippocampus of depression model rats and intervention effect of Chaihu Shugan San. Zhongguo Zhong Yao Za Zhi 38:1585–1589

    PubMed  Google Scholar 

  • Caputo V, Sinibaldi L, Fiorentino A (2011) Brain derived neurotrophic factor (BDNF) expression is regulated by microRNAs miR-26a and miR-26b allele-specific binding. PLoSOne 6:e28656

    CAS  Google Scholar 

  • Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    PubMed  CAS  Google Scholar 

  • Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447:823–828

    PubMed  CAS  Google Scholar 

  • Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61:24R–29R

    PubMed  CAS  Google Scholar 

  • Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD, Richards CA (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14:27–41

    PubMed  CAS  Google Scholar 

  • Cotter D, Mackay D, Landau S, Kerwin R, Everall I (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58:545–553

    PubMed  CAS  Google Scholar 

  • Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT, Ullian EM (2008) Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28:4322–4330

    PubMed  CAS  PubMed Central  Google Scholar 

  • De Pietri Tonelli D, Pulvers JM, Haffner C, Murchison EP, Hannon GJ, Huttner WB (2008) MiRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135:3911–3921

    PubMed  PubMed Central  Google Scholar 

  • Dorval V, Nelson PT, HĂ©bert SS (2013) Circulating microRNAs in Alzheimer’s disease: the search for novel biomarkers. Front Mol Neurosci 6:24

    PubMed  PubMed Central  Google Scholar 

  • Dwivedi Y (2011) Evidence demonstrating role of microRNAs in the etiopathology of major depression. J Chem Neuroanat 42:142–156

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dwivedi Y, Rizavi HS, Roberts RC, Conley RC, Tamminga CA, Pandey GN (2001) Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J Neurochem 77:916–928

    PubMed  CAS  Google Scholar 

  • Dwivedi Y, Rao JS, Rizavi HS, Kotowski J, Conley RR, Roberts RC, Tamminga CA, Pandey GN (2003a) Abnormal expression and functional characteristics of cyclic adenosine monophosphate response element binding protein in postmortem brain of suicide subjects. Arch Gen Psychiatry 60:273–282

    PubMed  CAS  Google Scholar 

  • Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN (2003b) Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 60:804–815

    PubMed  CAS  Google Scholar 

  • Dwivedi Y, Rizavi HS, Conley RR, Pandey GN (2006) ERK MAP kinase signaling in post-mortem brain of suicide subjects: differential regulation of upstream Raf kinases Raf-1 and B-Raf. Mol Psychiatry 11:86–98

    PubMed  CAS  Google Scholar 

  • Dwivedi Y, Rizavi HS, Zhang H, Roberts RC, Conley RR, Pandey GN (2009a) Aberrant extracellular signal-regulated kinase (ERK)1/2 signalling in suicide brain: role of ERK kinase 1 (MEK1). Int J Neuropsychopharmacol 12:1337–1354

    PubMed  CAS  Google Scholar 

  • Dwivedi Y, Rizavi H, Zhang H, Mondal AC, Roberts RC, Conley RR, Pandey GN (2009b) Neurotrophin receptor activation and expression in human postmortem brain: effect of suicide. Biol Psychiatry 65:319–328

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dwivedi Y, Zhang H, Pandey GN (2011a) Calcium sensing proteins in depressive disorder. Am Coll Neuropsychophramacol Abs 225:S75–S197

    Google Scholar 

  • Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384

    PubMed  CAS  Google Scholar 

  • Ernst C, Deleva V, Deng X, Sequeira A, Pomarenski A, Klempan T, Ernst N, Quirion R, Gratton A, Szyf M, Turecki G (2009) Alternative splicing, methylation state, and expression profile of tropomyosin-related kinase B in the frontal cortex of suicide completers. Arch Gen Psychiatry 66:22–32

    PubMed  CAS  Google Scholar 

  • Ernst C, Nagy C, Kim S, Yang JP, Deng X, Hellstrom IC, Choi KH, Gershenfeld H, Meaney MJ, Turecki G (2011) Dysfunction of astrocyte connexins 30 and 43 in dorsal lateral prefrontal cortex of suicide completers. Biol Psychiatry 70:312–319

    PubMed  CAS  Google Scholar 

  • Fava M, Davidson KG (1996) Definition and epidemiology of treatment-resistant depression. Psychiatr Clin North Am 19:179–200

    PubMed  CAS  Google Scholar 

  • Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, MĂ¼ller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107:677–684

    PubMed  CAS  Google Scholar 

  • Fiore R, Khudayberdiev S, Christensen M, Siegel G, Flavell SW, Kim TK, Greenberg ME, Schratt G (2009) Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J 28:697–710

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fiori LM, Bureau A, Labbe A, Croteau J, NoĂ«l S, MĂ©rette C, Turecki G (2011) Global gene expression profiling of the polyamine system in suicide completers. Int J Neuropsychopharmacol 14:595–605

    PubMed  CAS  Google Scholar 

  • Gao J, Wang WY, Mao YW, Gräff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, Warnecke JM, Sczakiel G (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28:655–661

    PubMed  CAS  Google Scholar 

  • He Y, Zhou Y, Xi Q, Cui H, Luo T, Song H, Nie X, Wang L, Ying B (2012) Genetic variations in microRNA processing genes are associated with susceptibility in depression. DNA Cell Biol 31:1499–1506

    PubMed  CAS  Google Scholar 

  • Honer WG (1999) Assessing the machinery of mind: synapses in neuropsychiatric disorders. J Psychiatry Neurosci 24:116–121

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hussain MU (2012) Micro-RNAs (miRNAs): genomic organisation, biogenesis and mode of action. Cell Tissue Res 349:405–413

    CAS  Google Scholar 

  • Im HI, Kenny PJ (2012) MicroRNAs in neuronal function and dysfunction. Trends Neurosci 35:325–334

    PubMed  CAS  PubMed Central  Google Scholar 

  • Impey S, Davare M, Lasiek A, Fortin D, Ando H, Varlamova O, Obrietan K, Soderling TR, Goodman RH, Wayman GA (2010) An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 43:146–156

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, Nelson DL, Moses K, Warren ST (2004) Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 7:113–117

    PubMed  CAS  Google Scholar 

  • Jin XF, Wu N, Wang L, Li J (2013) Circulating microRNAs: a novel class of potential biomarkers for diagnosing and prognosing central nervous system diseases. Cell Mol Neurobiol 33:601–613

    PubMed  CAS  Google Scholar 

  • Kawashima H, Numakawa T, Kumamaru E, Adachi N, Mizuno H, Ninomiya M, Kunugi H, Hashido K (2010) Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience 165:1301–1311

    PubMed  CAS  Google Scholar 

  • Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S, Wittchen HU, Kendler KS (1994) Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry 51:8–19

    PubMed  CAS  Google Scholar 

  • Kim AH, Reimers M, Maher B, Williamson V, McMichael O, McClay JL, van den Oord EJ, Riley BP, Kendler KS, Vladimirov VI (2010) MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res 124:183–191

    PubMed  Google Scholar 

  • Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7:911–920

    PubMed  CAS  Google Scholar 

  • Leistedt SJ, Linkowski P (2013) Brain, networks, depression, and more. Eur Neuropsychopharmacol 23:55–62

    PubMed  CAS  Google Scholar 

  • Li YJ, Xu M, Gao ZH, Wang YQ, Yue Z, Zhang YX, Li XX, Zhang C, Xie SY, Wang PY (2013) Alterations of serum levels of BDNF-related miRNAs in patients with depression. PLoS ONE 8:e63648

    PubMed  PubMed Central  Google Scholar 

  • Lopez JP, Fiori LM, Gross JA, Labonte B, Yerko V, Mechawar N, Turecki G (2014) Regulatory role of miRNAs in polyamine gene expression in the prefrontal cortex of depressed suicide completers. Int J Neuropsychopharmacol 17(1):23–32

    PubMed  CAS  Google Scholar 

  • Lugli G, Larson J, Martone ME, Jones Y, Smalheiser NR (2005) Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J Neurochem 94:896–905

    PubMed  CAS  Google Scholar 

  • Lugli G, Torvik VI, Larson J, Smalheiser NR (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem 106:650–661

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ma L, Wei L, Wu F, Hu Z, Liu Z, Yuan W (2013) Advances with microRNAs in Parkinson’s disease research. Drug Des Devel Ther 7:1103–1113

    PubMed  PubMed Central  Google Scholar 

  • Malphettes L, Fussenegger M (2006) Impact of RNA interference on gene networks. Metab Eng 8:672–683

    PubMed  CAS  Google Scholar 

  • Mathonnet G, Fabian MR, Svitkin YV, Parsyan A, Huck L, Murata T, Biffo S, Merrick WC, Darzynkiewicz E, Pillai RS, Filipowicz W, Duchaine TF, Sonenberg N (2007) MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317:1764–1767

    PubMed  CAS  Google Scholar 

  • Matigian N, Windus L, Smith H, Filippich C, Pantelis C, McGrath J, Mowry B, Hayward N (2007) Expression profiling in monozygotic twins discordant for bipolar disorder reveals dysregulation of the WNT signalling pathway. Mol Psychiatry 12:815–825

    PubMed  CAS  Google Scholar 

  • Maussion G, Yang J, Yerko V, Barker P, Mechawar N, Ernst C, Turecki G (2012) Regulation of a truncated form of tropomyosin-related kinase B (TrkB) by Hsa-miR-185* in frontal cortex of suicide completers. PLoS ONE 7:e39301

    PubMed  CAS  PubMed Central  Google Scholar 

  • McEwen BS (2000) Effects of adverse experiences for brain structure and function. Biol Psychiatry 48:713–714

    Google Scholar 

  • Meerson A, Cacheaux L, Goosens KA, Sapolsky RM, Soreq H, Kaufer D (2010) Changes in brain MicroRNAs contribute to cholinergic stress reactions. J Mol Neurosci 40:47–55

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mellios N, Sur M (2012) The Emerging Role of microRNAs in Schizophrenia and Autism Spectrum Disorders. Front Psychiatry 3:39

    PubMed  PubMed Central  Google Scholar 

  • Mellios N, Sugihara H, Castro J (2011) miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity. Nat Neurosci 14:1240–1242

    PubMed  CAS  PubMed Central  Google Scholar 

  • Meng Y, Takahashi H, Meng J, Zhang Y, Lu G, Asrar S, Nakamura T, Jia Z (2004) Regulation of ADF/cofilin phosphorylation and synaptic function by LIM-kinase. Neuropharmacology 47:746–754

    PubMed  CAS  Google Scholar 

  • Michalak P (2006) RNA world - the dark matter of evolutionary genomics. J Evol Biol 19:1768–1774

    PubMed  CAS  Google Scholar 

  • Mo WJ, Fu XP, Han XT, Yang GY, Zhang JG, Guo FH, Huang Y, Mao YM, Li Y, Xie Y (2009) A stochastic model for identifying differential gene pair co-expression patterns in prostate cancer progression. BMC Genom 10:340

    Google Scholar 

  • Mulrow CD, Williams JW Jr, Trivedi M, Chiquette E, Aguilar C, Cornell JE, Badgett R, Noel PH, Lawrence V, Lee S, Luther M, Ramirez G, Richardson WS, Stamm K (1999) Treatment of depression-newer pharmacotherapies. Evid Rep Technol Assess (Summ) 7:1–4

    Google Scholar 

  • Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020: global burden of disease study. Lancet 349:1498–1504

    PubMed  CAS  Google Scholar 

  • Olde Loohuis NF, Kos A, Martens GJ, Van Bokhoven H, Nadif Kasri N, Aschrafi A (2012) MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 69:89–102

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ongur D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 95:13290–13295

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ota KT, Duman RS (2013) Environmental and pharmacological modulations of cellular plasticity: role in the pathophysiology and treatment of depression. Neurobiol Dis 57:28–37

    PubMed  CAS  Google Scholar 

  • Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 49:391–404

    PubMed  CAS  Google Scholar 

  • Qurashi A, Chang S, Peng J (2007) Role of microRNA pathway in mental retardation. Sci World J 7:146–154

    Google Scholar 

  • Rajasethupathy P, Fiumara F, Sheridan R, Betel D, Puthanveettil SV, Russo JJ, Sander C, Tuschl T, Kandel E (2009) Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron 63:803–817

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rinaldi A, Vincenti S, De Vito F, Bozzoni I, Oliverio A, Presutti C, Fragapane P, Mele A (2010) Stress induces region specific alterations in microRNAs expression in mice. Behav Brain Res 208:265–269

    PubMed  CAS  Google Scholar 

  • Salgado-Delgado R, Tapia Osorio A, Saderi N, Escobar C (2011) Disruption of circadian rhythms: a crucial factor in the etiology of depression. Depress Res Treat 839743

    Google Scholar 

  • Sato F, Tsuchiya S, Meltzer SJ, Shimizu K (2011) MicroRNAs and epigenetics. FEBS J 278:1598–1609

    PubMed  CAS  Google Scholar 

  • Schaefer A, O’carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, Greengard P (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553–1558

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schratt G (2009) Fine-tuning neural gene expression with microRNAs. Curr Opin Neurobiol 19:213–219

    PubMed  CAS  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    PubMed  CAS  Google Scholar 

  • Scott HL, Tamagnini F, Narduzzo KE, Howarth JL, Lee YB, Wong LF, Brown MW, Warburton EC, Bashir ZI, Uney JB (2012) MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex. Eur J Neurosci 36:2941–2948

    PubMed  PubMed Central  Google Scholar 

  • Serretti A, Benedetti F, Mandelli L, Lorenzi C, Pirovano A, Colombo C, Smeraldi E (2003) Genetic dissection of psychopathological symptoms: insomnia in mood disorders and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet 121B:35–38

    PubMed  Google Scholar 

  • Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M, Khudayberdiev S, Leuschner PF, Busch CJ, Kane C, HĂ¼bel K, Dekker F, Hedberg C, Rengarajan B, Drepper C, Waldmann H, Kauppinen S, Greenberg ME, Draguhn A, Rehmsmeier M, Martinez J, Schratt GM (2009) A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 11:705–716

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smalheiser NR (2008) Synaptic enrichment of microRNAs in adult mouse forebrain is related to structural features of their precursors. Biol Direct 3:44

    PubMed  PubMed Central  Google Scholar 

  • Smalheiser NR, Lugli G, Rizavi HS, Zhang H, Torvik VI, Pandey GN, Davis JM, Dwivedi Y (2011) MicroRNA expression in rat brain exposed to repeated inescapable shock: differential alterations in learned helplessness versus non-learned helplessness. Int J Neuropsychopharmacol 14:1315–1325

    PubMed  CAS  Google Scholar 

  • Smalheiser NR, Lugli G, Rizavi HS, Torvik VI, Turecki G, Dwivedi Y (2012) MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS ONE 7:e33201

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smalheiser NR, Zhang H, Dwivedi Y (2014) Enoxacin elevates microRNA levels in rat frontal cortex and prevents learned helplessness. Front Neurogenomics (in press)

    Google Scholar 

  • Stäehler CF, Keller A, Leidinger P, Backes C, Chandran A, Wischhusen J, Meder B, Meese E (2012) Whole miRNome-wide differential co-expression of microRNAs. Genomics Proteomics Bioinform 10:285–294

    Google Scholar 

  • Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R, Wan X, Pavlidis P, Mills AA, Karayiorgou M, Gogos JA (2008) Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 40:751–760

    PubMed  CAS  Google Scholar 

  • Sutton MA, Schuman EM (2005) Local translational control in dendrites and its role in long-term synaptic plasticity. J Neurobiol 64:116

    PubMed  CAS  Google Scholar 

  • Tardito D, Mallei A, Popoli M (2013) Lost in translation. New unexplored avenues for neuropsychopharmacology: epigenetics and microRNAs. Expert Opin Investig Drugs 22:217–233

    PubMed  CAS  Google Scholar 

  • Todd PK, Mack KJ, Malter JS (2003) The fragile X mental retardation protein is required for type-I metabotropic glutamate receptor-dependent translation of PSD-95. Proc Natl Acad Sci USA 100:14374–14378

    PubMed  CAS  PubMed Central  Google Scholar 

  • Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402:421–425

    PubMed  CAS  Google Scholar 

  • Turner JD, Alt SR, Cao L, Vernocchi S, Trifonova S, Battello N, Muller CP (2010) Transcriptional control of the glucocorticoid receptor: CpG islands, epigenetics and more. Biochem Pharmacol 80:1860–1868

    PubMed  CAS  Google Scholar 

  • Uchida S, Nishida A, Hara K, Kamemoto T, Suetsugi M, Fujimoto M, Watanuki T, Wakabayashi Y, Otsuki K, McEwen BS, Watanabe Y (2008) Characterization of the vulnerability to repeated stress in Fischer 344 rats: possible involvement of microRNA-mediated down-regulation of the glucocorticoid receptor. Eur J Neurosci 27(9):2250–2261

    PubMed  Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    PubMed  CAS  Google Scholar 

  • Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA 102:16426–16431

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vreugdenhil E, Verissimo CS, Mariman R, Kamphorst JT, Barbosa JS, Zweers T, Champagne DL, Schouten T, Meijer OC, de Kloet ER, Fitzsimons CP (2009) MicroRNA 18 and 124a down-regulate the glucocorticoid receptor: implications for glucocorticoid responsiveness in the brain. Endocrinology 150:2220–2228

    PubMed  CAS  Google Scholar 

  • Wang J, Cheng CM, Zhou J, Smith A, Weickert CS, Perlman WR, Becker KG, Powell D, Bondy CA (2004) Estradiol alters transcription factor gene expression in primate prefrontal cortex. J Neurosci Res 76:306–314

    PubMed  CAS  Google Scholar 

  • Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, Marks D, Obrietan K, Soderling TR, Goodman RH, Impey S (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA 105:9093–9098

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741

    PubMed  CAS  Google Scholar 

  • Weiler IJ, Irwin SA, Klintsova AY, Spencer CM, Brazelton AD, Miyashiro K, Comery TA, Patel B, Eberwine J, Greenough WT (1997) Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc Natl Acad Sci USA 94:5395–5400

    PubMed  CAS  PubMed Central  Google Scholar 

  • Witke W (2004) The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol 14:461–469

    PubMed  CAS  Google Scholar 

  • Wu J, Xie X (2006) Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol 7:R85

    PubMed  PubMed Central  Google Scholar 

  • Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 103:4034–4039

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xu J, Li CX, Li YS, Lv JY, Ma Y, Shao TT, Xu LD, Wang YY, Du L, Zhang YP, Jiang W, Li CQ, Xiao Y, Li X (2011) MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res 39:825–836

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zeng Y, Sankala H, Zhang X, Graves PR (2008) Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem J 413:429–436

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The research was partly supported by grants from National Institute of Mental Health (R01MH082802; R21MH081099; R21MH091509; 1R01MH101890), American Foundation for Suicide Prevention, and University of Illinois at Chicago Center for Clinical and Translational Sciences supported by National Center for Advancing Translational Sciences, National Institutes of Health (Grant # UL1TR000050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Dwivedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dwivedi, Y. (2014). microRNA Function and Dysregulation in Depression and Suicide. In: Cannon, K., Hudzik, T. (eds) Suicide: Phenomenology and Neurobiology. Springer, Cham. https://doi.org/10.1007/978-3-319-09964-4_17

Download citation

Publish with us

Policies and ethics