Skip to main content

Advertisement

Log in

Cilostazol Strengthens Barrier Integrity in Brain Endothelial Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We studied the effect of cilostazol, a selective inhibitor of phosphodiesterase 3, on barrier functions of blood–brain barrier (BBB)-related endothelial cells, primary rat brain capillary endothelial cells (RBEC), and the immortalized human brain endothelial cell line hCMEC/D3. The pharmacological potency of cilostazol was also evaluated on ischemia-related BBB dysfunction using a triple co-culture BBB model (BBB Kit™) subjected to 6-h oxygen glucose deprivation (OGD) and 3-h reoxygenation. There was expression of phosphodiesterase 3B mRNA in RBEC, and a significant increase in intracellular cyclic AMP (cAMP) content was detected in RBEC treated with both 1 and 10 μM cilostazol. Cilostazol increased the transendothelial electrical resistance (TEER), an index of barrier tightness of interendothelial tight junctions (TJs), and decreased the endothelial permeability of sodium fluorescein through the RBEC monolayer. The effects on these barrier functions were significantly reduced in the presence of protein kinase A (PKA) inhibitor H-89. Microscopic observation revealed smooth and even localization of occludin immunostaining at TJs and F-actin fibers at the cell borders in cilostazol-treated RBEC. In hCMEC/D3 cells treated with 1 and 10 μM cilostazol for 24 and 96 h, P-glycoprotein transporter activity was increased, as assessed by rhodamine 123 accumulation. Cilostazol improved the TEER in our triple co-culture BBB model with 6-h OGD and 3-h reoxygenation. As cilostazol stabilized barrier integrity in BBB-related endothelial cells, probably via cAMP/PKA signaling, the possibility that cilostazol acts as a BBB-protective drug against cerebral ischemic insults to neurons has to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25

    Article  PubMed  CAS  Google Scholar 

  • Al Ahmad A, Gassmann M, Ogunshola OO (2012) Involvement of oxidative stress in hypoxia-induced blood–brain barrier breakdown. Microvasc Res 84:222–225

    Article  PubMed  CAS  Google Scholar 

  • Aslam M, Pfeil U, Gunduz D, Rafiq A, Kummer W, Piper HM, Noll T (2012) Intermedin (adrenomedullin2) stabilizes the endothelial barrier and antagonizes thrombin-induced barrier failure in endothelial cell monolayers. Br J Pharmacol 165:208–222

    Article  PubMed  CAS  Google Scholar 

  • Baltes S, Gastens AM, Fedrowitz M, Potschka H, Kaever V, Löscher W (2007) Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology 52:333–346

    Article  PubMed  CAS  Google Scholar 

  • Beckers CM, van Hinsbergh VW, van Nieuw Amerongen GP (2010) Driving Rho GTPase activity in endothelial cells regulates barrier integrity. Thromb Haemost 103:40–55

    Article  PubMed  CAS  Google Scholar 

  • Carl SM, Lindley DJ, Couraud PO, Weksler BB, Romero I, Mowery SA, Knipp GT (2010) ABC and SLC transporter expression and pot substrate characterization across the human CMEC/D3 blood–brain barrier cell line. Mol Pharmcol 7:1057–1068

    Article  CAS  Google Scholar 

  • Carman AJ, Mills JH, Krenz A, Kim DG, Bynoe MS (2011) Adenosine receptor signaling modulates permeability of the blood–brain barrier. J Neurosci 31:13272–13280

    Article  PubMed  CAS  Google Scholar 

  • Ceruti S, Colombo L, Magni G, Vigano F, Boccazzi M, Deli MA, Sperlagh B, Abbracchio MP, Kittel A (2011) Oxygen-glucose deprivation increases the enzymatic activity and the microvesicle-mediated release of ectonucleotidases in the cells composing the blood–brain barrier. Neurochem Int 59:259–271

    Article  PubMed  CAS  Google Scholar 

  • Chan GN, Hoque MT, Cummins CL, Bendayan R (2011) Regulation of P-glycoprotein by orphan nuclear receptors in human brain microvessel endothelial cells. J Neurochem 118:163–175

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Kis B, Hashimoto H, Busija DW, Takei Y, Yamashita H, Ueta Y (2006) Adrenomedullin 2 protects rat cerebral endothelial cells from oxidative damage in vitro. Brain Res 1086:42–49

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Thompson MA, Walker HJ, Gray CE, Diaz Encarnacion MM, Warner GM, Grande JP (2004) Differential regulation of mesangial cell mitogenesis by cAMP phosphodiesterase isozymes 3 and 4. Am J Physiol Renal Physiol 287:F940–F953

    Article  PubMed  CAS  Google Scholar 

  • Cheng D, Ren J, Gillespie DG, Mi Z, Jackson EK (2010) Regulation of 3′,5′-cAMP in preglomerular smooth muscle and endothelial cells from genetically hypertensive rats. Hypertension 56:1096–1101

    Article  PubMed  CAS  Google Scholar 

  • Choi JM, Shin HK, Kim KY, Lee JH, Hong KW (2002) Neuroprotective effect of cilostazol against focal cerebral ischemia via antiapoptotic action in rats. J Pharmacol Exp Ther 300:787–793

    Article  PubMed  CAS  Google Scholar 

  • Deli MA, Szabo C, Dung N, Joo F (1997) Immunohistochemical and electron microscopy detections on primary cultures of rat cerebral endothelial cells. In: Boer AG, Sutanto W (eds) Drug transport across the blood–brain barrier: In vivo and in vitro techniques. Harwood Academic, Amsterdam, pp 23–28

    Google Scholar 

  • Deli MA, Ábrahám CS, Takahata H, Niwa M (2001) Tissue plasminogen activator inhibits P-glycoprotein activity in brain endothelial cells. Eur J Pharmacol 411:R3–R5

    Article  PubMed  CAS  Google Scholar 

  • Deli MA, Abraham CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25:59–127

    Article  PubMed  Google Scholar 

  • Deli MA, Veszelka S, Csiszar B, Toth A, Kittel A, Csete M, Sipos A, Szalai A, Fulop L, Penke B, Abraham CS, Niwa M (2010) Protection of the blood–brain barrier by pentosan against amyloid-β-induced toxicity. J Alzheimers Dis 22:777–794

    PubMed  CAS  Google Scholar 

  • Di Benedetto G, Zoccarato A, Lissandron V, Terrin A, Li X, Houslay MD, Baillie GS, Zaccolo M (2008) Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ Res 103:836–844

    Article  PubMed  Google Scholar 

  • Djouder N, Tuerk RD, Suter M, Salvioni P, Thali RF, Scholz R, Vaahtomeri K, Auchli Y, Rechsteiner H, Brunisholz RA, Viollet B, Mäkelä TP, Wallimann T, Neumann D, Krek W (2010) PKA phosphorylates and inactivates AMPKα to promote efficient lipolysis. EMBO J 29:469–481

    Article  PubMed  CAS  Google Scholar 

  • Elias BC, Suzuki T, Seth A, Giorgianni F, Kale G, Shen L, Turner JR, Naren A, Desiderio DM, Rao R (2009) Phosphorylation of Tyr-398 and Tyr-402 in occludin prevents its interaction with ZO-1 and destabilizes its assembly at the tight junctions. J Biol Chem 284:1559–1569

    Article  PubMed  CAS  Google Scholar 

  • Feinstein WP, Zhu B, Leavesley SJ, Sayner SL, Rich TC (2012) Assessment of cellular mechanisms contributing to cAMP compartmentalization in pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 302:C839–C852

    Article  PubMed  CAS  Google Scholar 

  • Fontaine M, Elmquist WF, Miller DW (1996) Use of rhodamine 123 to examine the functional activity of P-glycoprotein in primary cultured brain microvessel endothelial cell monolayers. Life Sci 59:1521–1531

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Tsukita S (2006) Claudins in occluding junctions of humans and flies. Trends Cell Biol 16:181–188

    Article  PubMed  CAS  Google Scholar 

  • Goldblum SE, Rai U, Tripathi A, Thakar M, De Leo L, Di Toro N, Not T, Ramachandran R, Puche AC, Hollenberg MD, Fasano A (2011) The active Zot domain (aa 288–293) increases ZO-1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO-1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation. FASEB J 25:144–158

    Article  PubMed  CAS  Google Scholar 

  • Haorah J, Ramirez SH, Schall K, Smith D, Pandya R, Persidsky Y (2007) Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood–brain barrier dysfunction. J Neurochem 101:566–576

    Article  PubMed  CAS  Google Scholar 

  • Hartz AM, Bauer B, Fricker G, Miller DS (2004) Rapid regulation of P-glycoprotein at the blood–brain barrier by endothelin-1. Mol Pharmacol 66:387–394

    Article  PubMed  CAS  Google Scholar 

  • Hartz AM, Bauer B, Fricker G, Miller DS (2006) Rapid modulation of P-glycoprotein-mediated transport at the blood–brain barrier by tumor necrosis factor-α and lipopolysaccharide. Mol Pharmacol 69:462–470

    Article  PubMed  CAS  Google Scholar 

  • Hermann DM, Elali A (2012) The abluminal endothelial membrane in neurovascular remodeling in health and disease. Sci Signal 5(236):re4

    Article  PubMed  CAS  Google Scholar 

  • Hidaka H, Kobayashi R (1992) Pharmacology of protein kinase inhibitors. Annu Rev Pharmacol Toxicol 32:377–397

    Article  PubMed  CAS  Google Scholar 

  • Hien TT, Kim HG, Han EH, Kang KW, Jeong HG (2010) Molecular mechanism of suppression of MDR1 by puerarin from Pueraria lobata via NF-κB pathway and cAMP-responsive element transcriptional activity-dependent up-regulation of AMP-activated protein kinase in breast cancer MCF-7/adr cells. Mol Nutr Food Res 54:918–928

    Article  PubMed  CAS  Google Scholar 

  • Hoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A, Tilling T, Galla HJ (1998) Hydrocortisone reinforces the blood–brain properties in a serum free cell culture system. Biochem Biophys Res Commun 247:312–315

    Article  PubMed  CAS  Google Scholar 

  • Hong KW, Lee JH, Kima KY, Park SY, Lee WS (2006) Cilostazol: therapeutic potential against focal cerebral ischemic damage. Curr Pharm Des 12:565–573

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro M, Mishiro K, Fujiwara Y, Chen H, Izuta H, Tsuruma K, Shimazawa M, Yoshimura S, Satoh M, Iwama T, Hara H (2010) Phosphodiesterase-III inhibitor prevents hemorrhagic transformation induced by focal cerebral ischemia in mice treated with tPA. PLoS ONE 5:e15178

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro M, Suzuki Y, Mishiro K, Kakino M, Tsuruma K, Shimazawa M, Yoshimura S, Iwama T, Hara H (2011) Blockade of phosphodiesterase-III protects against oxygen-glucose deprivation in endothelial cells by upregulation of VE-cadherin. Curr Neurovasc Res 8:86–94

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki T, Chiba H, Kojima T, Fujibe M, Soma T, Miyajima H, Nagasawa K, Wada I, Sawada N (2003) Cyclic AMP induces phosphorylation of claudin-5 immunoprecipitates and expression of claudin-5 gene in blood–brain-barrier endothelial cells via protein kinase A-dependent and -independent pathways. Exp Cell Res 290:275–288

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Hashimoto A, Matsumoto Y, Yao H, Miyakoda G (2010) Cilostazol, a phosphodiesterase inhibitor, attenuates photothrombotic focal ischemic brain injury in hypertensive rats. J Cereb Blood Flow Metab 30:343–351

    Article  PubMed  CAS  Google Scholar 

  • Kajinami K, Koizumi J, Ueda K, Miyamoto S, Takegoshi T, Mabuchi H (2000) Effects of NK-104, a new hydroxymethylglutaryl-coenzyme reductase inhibitor, on low-density lipoprotein cholesterol in heterozygous familial hypercholesterolemia. Hokuriku NK-104 Study Group. Am J Cardiol 85:178–183

    Article  PubMed  CAS  Google Scholar 

  • Kelley DJ, Davidson RJ, Elliott JL, Lahvis GP, Yin JC, Bhattacharyya A (2007) The cyclic AMP cascade is altered in the fragile X nervous system. PLoS ONE 2:e931

    Article  PubMed  Google Scholar 

  • Kim M, Park AJ, Havekes R, Chay A, Guercio LA, Oliveira RF, Abel T, Blackwell KT (2011) Colocalization of protein kinase A with adenylyl cyclase enhances protein kinase A activity during induction of long-lasting long-term-potentiation. PLoS Comput Biol 7:e1002084

    Article  PubMed  CAS  Google Scholar 

  • Kis B, Deli MA, Kobayashi H, Abraham CS, Yanagita T, Kaiya H, Isse T, Nishi R, Gotoh S, Kangawa K, Wada A, Greenwood J, Niwa M, Yamashita H, Ueta Y (2001) Adrenomedullin regulates blood–brain barrier functions in vitro. NeuroReport 12:4139–4142

    Article  PubMed  CAS  Google Scholar 

  • Kis B, Chen L, Ueta Y, Busija DW (2006) Autocrine peptide mediators of cerebral endothelial cells and their role in the regulation of blood–brain barrier. Peptides 27:211–222

    Article  PubMed  CAS  Google Scholar 

  • Koto T, Takubo K, Ishida S, Shinoda H, Inoue M, Tsubota K, Okada Y, Ikeda E (2007) Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol 170:1389–1397

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Lee YK, Ishikawa M, Koga K, Fukunaga M, Miyakoda G, Mori T, Hosokawa T, Hong KW (2003) Cilostazol reduces brain lesion induced by focal cerebral ischemia in rats-an MRI study. Brain Res 994:91–98

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Shin HK, Park SY, Kim CD, Lee WS, Hong KW (2009) Cilostazol preserves CA1 hippocampus and enhances generation of immature neuroblasts in dentate gyrus after transient forebrain ischemia in rats. Exp Neurol 215:87–94

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Lee HR, Shin HK, Park SY, Hong KW, Kim EK, Bae SS, Lee WS, Rhim BY, Kim CD (2011) Cilostazol enhances integrin-dependent homing of progenitor cells by activation of cAMP-dependent protein kinase in synergy with Epac1. J Neurosci Res 89:650–660

    Article  PubMed  CAS  Google Scholar 

  • Lim JC, Kania KD, Wijesuriya H, Chawla S, Sethi JK, Pulaski L, Romero IA, Couraud PO, Weksler BB, Hladky SB, Barrand MA (2008) Activation of β-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J Neurochem 106:1855–1865

    PubMed  CAS  Google Scholar 

  • Liu S, Yu C, Yang F, Paganini-Hill A, Fisher MJ (2012) Phosphodiesterase inhibitor modulation of brain microvascular endothelial cell barrier properties. J Neurol Sci 320:45–51

    Article  PubMed  CAS  Google Scholar 

  • Lorenowicz MJ, Fernandez-Borja M, Kooistra MR, Bos JL, Hordijk PL (2008) PKA and Epac1 regulate endothelial integrity and migration through parallel and independent pathways. Eur J Cell Biol 87:779–792

    Article  PubMed  CAS  Google Scholar 

  • Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109:366–398

    Article  PubMed  CAS  Google Scholar 

  • Mackic JB, Stins M, McComb JG, Calero M, Ghiso J, Kim KS, Yan SD, Stern D, Schmidt AM, Frangione B, Zlokovic BV (1998) Human blood–brain barrier receptors for Alzheimer’s amyloid- β 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J Clin Invest 102:734–743

    Article  PubMed  CAS  Google Scholar 

  • Maurice DH (2011) Subcellular signaling in the endothelium: cyclic nucleotides take their place. Curr Opin Pharmacol 11:656–664

    Article  PubMed  CAS  Google Scholar 

  • Miki T, Taira M, Hockman S, Shimada F, Lieman J, Napolitano M, Ward D, Taira M, Makino H, Manganiello VC (1996) Characterization of the cDNA and gene encoding human PDE3B, the cGIP1 isoform of the human cyclic GMP-inhibited cyclic nucleotide phosphodiesterase family. Genomics 36:476–485

    Article  PubMed  CAS  Google Scholar 

  • Miller DS (2010) Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends Pharmacol Sci 31:246–254

    Article  PubMed  CAS  Google Scholar 

  • Mills JH, Alabanza L, Weksler BB, Couraud P-O, Romero IA, Bynoe MS (2011) Human brain endothelial cells are responsive to adenosine receptor activation. Purinergic Signal 7:265–273

    Article  PubMed  CAS  Google Scholar 

  • Morofuji Y, Nakagawa S, So G, Hiu T, Horai S, Hayashi K, Tanaka K, Suyama K, Deli MA, Nagata I, Niwa M (2010) Pitavastatin strengthens the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 30:727–735

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M (2007) Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27:687–694

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M (2009) A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263

    Article  PubMed  CAS  Google Scholar 

  • Netherton SJ, Maurice DH (2005) Vascular endothelial cell cyclic nucleotide phosphodiesterases and regulated cell migration: implications in angiogenesis. Mol Pharmacol 67:263–272

    Article  PubMed  CAS  Google Scholar 

  • Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, Engelhardt B, Grammas P, Nedergaard M, Nutt J, Pardridge W, Rosenberg GA, Smith Q, Drewes LR (2008) Strategies to advance translational research into brain barriers. Lancet Neurol 7:84–96

    Article  PubMed  CAS  Google Scholar 

  • Nishitsuji K, Hosono T, Nakamura T, Bu G, Michikawa M (2011) Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood–brain barrier model. J Biol Chem 286:17536–17542

    Article  PubMed  CAS  Google Scholar 

  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  PubMed  CAS  Google Scholar 

  • Nitz T, Eisenblätter T, Psathaki K, Galla H-J (2003) Serum-derived factor weaken the barrier properties of cultured porcine brain capillary endothelial cells in vitro. Brain Res 981:30–40

    Article  PubMed  CAS  Google Scholar 

  • Noda K, Zhang J, Fukuhara S, Kunimoto S, Yoshimura M, Mochizuki N (2010) Vascular endothelial-cadherin stabilizes at cell–cell junctions by anchoring to circumferential actin bundles through α- and β-catenins in cyclic AMP-Epac-Rap1 signal-activated endothelial cells. Mol Biol Cell 21:584–596

    Article  PubMed  CAS  Google Scholar 

  • Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309–327

    Article  PubMed  CAS  Google Scholar 

  • Perrière N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO, Deli MA, Roux F (2005) Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood–brain barrier-specific properties. J Neurochem 93:279–289

    Article  PubMed  Google Scholar 

  • Perrière N, Yousif S, Cazaubon S, Chaverot N, Bourasset F, Cisternino S, Declèves X, Hori S, Terasaki T, Deli M, Scherrmann JM, Temsamani J, Roux F, Couraud PO (2007) A functional in vitro model of rat blood–brain barrier for molecular analysis of efflux transporters. Brain Res 1150:1–13

    Article  PubMed  Google Scholar 

  • Poller B, Gutmann H, Krahenbuhl S, Weksler B, Romero I, Couraud PO, Tuffin G, Drewe J, Huwyler J (2008) The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J Neurochem 107:1358–1368

    Article  PubMed  CAS  Google Scholar 

  • Poller B, Drewe J, Krahenbuhl S, Huwyler J, Gutmann H (2010) Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood–brain barrier. Cell Mol Neurobiol 30:63–70

    Article  PubMed  CAS  Google Scholar 

  • Potschka H (2010) Modulating P-glycoprotein regulation: future perspectives for pharmacoresistant epilepsies? Epilepsia 51:1333–1347

    Article  PubMed  CAS  Google Scholar 

  • Rampersad SN, Ovens JD, Huston E, Umana MB, Wilson LS, Netherton SJ, Lynch MJ, Baillie GS, Houslay MD, Maurice DH (2010) Cyclic AMP phosphodiesterase 4D (PDE4D) Tethers EPAC1 in a vascular endothelial cadherin (VE-Cad)-based signaling complex and controls cAMP-mediated vascular permeability. J Biol Chem 285:33614–33622

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt RR, Chin E, Zhou J, Taira M, Murata T, Manganiello VC, Bondy CA (1995) Distinctive anatomical patterns of gene expression for cGMP-inhibited cyclic nucleotide phosphodiesterases. J Clin Invest 95:1528–1538

    Article  PubMed  CAS  Google Scholar 

  • Rohlff C, Glazer RI (1995) Regulation of multidrug resistance through the cAMP and EGF signalling pathways. Cell Signal 7:431–443

    Article  PubMed  CAS  Google Scholar 

  • Rubin LL, Staddon JM (1999) The cell bilogy of the blood–brain barrier. Annu Rev Neurosci 22:11–28

    Article  PubMed  CAS  Google Scholar 

  • Sayner SL (2011) Emerging themes of cAMP regulation of the pulmonary endothelial barrier. Am J Physiol Lung Cell Mol Physiol 300:L667–L678

    Article  PubMed  Google Scholar 

  • Schankin CJ, Kruse LS, Reinisch VM, Jungmann S, Kristensen JC, Grau S, Ferrari U, Sinicina I, Goldbrunner R, Straube A, Kruuse C (2010) Nitric oxide-induced changes in endothelial expression of phosphodiesterases 2, 3, and 5. Headache 50:431–441

    Article  PubMed  Google Scholar 

  • Shinohara Y, Katayama Y, Uchiyama S, Yamaguchi T, Handa S, Matsuoka K, Ohashi Y, Tanahashi N, Yamamoto H, Genka C, Kitagawa Y, Kusuoka H, Nishimaru K, Tsushima M, Koretsune Y, Sawada T, Hamada C (2010) Cilostazol for prevention of secondary stroke (CSPS 2): an aspirin-controlled, double-blind, randomised non-inferiority trial. Lancet Neurol 9:959–968

    Article  PubMed  CAS  Google Scholar 

  • Soma T, Chiba H, Kato-Mori Y, Wada T, Yamashita T, Kojima T, Sawada N (2004) Thr(207) of claudin-5 is involved in size-selective loosening of the endothelial barrier by cyclic AMP. Exp Cell Res 300:202–212

    Article  PubMed  CAS  Google Scholar 

  • Spindler V, Waschke J (2011) Beta-adrenergic stimulation contributes to maintenance of endothelial barrier functions under baseline conditions. Microcirculation 18:118–127

    Article  PubMed  CAS  Google Scholar 

  • Spindler V, Schlegel N, Waschke J (2010) Role of GTPases in control of microvascular permeability. Cardiovasc Res 87:243–253

    Article  PubMed  CAS  Google Scholar 

  • Sudo T, Tachibana K, Toga K, Tochizawa S, Inoue Y, Kimura Y, Hidaka H (2000) Potent effects of novel anti-platelet aggregatory cilostamide analogues on recombinant cyclic nucleotide phosphodiesterase isozyme activity. Biochem Pharmacol 59:347–356

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Elias BC, Seth A, Shen L, Turner JR, Giorgianni F, Desiderio D, Guntaka R, Rao R (2009) PKC eta regulates occludin phosphorylation and epithelial tight junction integrity. Proc Natl Acad Sci U S A 106:61–66

    Article  PubMed  CAS  Google Scholar 

  • Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S, Dejana E (2008) Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 10:923–934

    Article  PubMed  CAS  Google Scholar 

  • Tai LM, Reddy PS, Lopez-Ramirez MA, Davies HA, Male DK, Loughlin AJ, Romero IA (2009) Polarized P-glycoprotein expression by the immortalised human brain endothelial cell line, hCMEC/D3, restricts apical-to-basolateral permeability to rhodamine 123. Brain Res 1292:14–24

    Article  PubMed  CAS  Google Scholar 

  • Thompson PD, Zimet R, Forbes WP, Zhang P (2002) Meta-analysis of results from eight randomized, placebo-controlled trials on the effect of cilostazol on patients with intermittent claudication. Am J Cardiol 90:1314–1319

    Article  PubMed  CAS  Google Scholar 

  • Tixier E, Leconte C, Touzani O, Roussel S, Petit E, Bernaudin M (2008) Adrenomedullin protects neurons against oxygen glucose deprivation stress in an autocrine and paracrine manner. J Neurochem 106:1388–1403

    Article  PubMed  CAS  Google Scholar 

  • Torii H, Kubota H, Ishihara H, Suzuki M (2007) Cilostazol inhibits the redistribution of the actin cytoskeleton and junctional proteins on the blood–brain barrier under hypoxia/reoxygenation. Pharmacol Res 55:104–110

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Yamazaki Y, Katsuno T, Tamura A, Tsukita S (2008) Tight junction-based epithelial microenvironment and cell proliferation. Oncogene 27:6930–6938

    Article  PubMed  CAS  Google Scholar 

  • Wajima D, Nakamura M, Horiuchi K, Takeshima Y, Nishimura F, Nakase H (2011) Cilostazol minimizes venous ischemic injury in diabetic and normal rats. J Cereb Blood Flow Metab 31:2030–2040

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Zhang N, Liu M, Tanaka R, Mizuno Y, Urabe T (2006) Cilostazol protects against brain white matter damage and cognitive impairment in a rat model of chronic cerebral hypoperfusion. Stroke 37:1539–1545

    Article  PubMed  CAS  Google Scholar 

  • Weksler BB, Subileau EA, Perrière N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO (2005) blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19:1872–1874

    PubMed  CAS  Google Scholar 

  • Wilson LS, Baillie GS, Pritchard LM, Umana B, Terrin A, Zaccolo M, Houslay MD, Maurice DH (2011) A phosphodiesterase 3B-based signaling complex integrates exchange protein activated by cAMP 1 and phosphatidylinositol 3-kinase signals in human arterial endothelial cells. J Biol Chem 286:16285–16296

    Article  PubMed  CAS  Google Scholar 

  • Wojtal KA, de Vries E, Hoekstra D, van Ijzendoorn SCD (2006) Efficient trafficking of MDR1/P-glycoprotein to apical canalicular plasma membranes in HepG2 cells requires PKA-RIIα anchoring and glucosylceramide. Mol Biol Cell 17:3638–3650

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F (2008) Rac1 activation controls nuclear localization of β-catenin during canonical Wnt signaling. Cell 133:340–353

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Ramirez SH, Sato S, Kiyota T, Cerny RL, Kaibuchi K, Persidsky Y, Ikezu T (2008) Phosphorylation of claudin-5 and occludin by rho kinase in brain endothelial cells. Am J Pathol 172:521–533

    Article  PubMed  CAS  Google Scholar 

  • Youdim KA, Avdeef A, Abbott NJ (2003) In vitro trans-monolayer permeability calculations: often forgotten assumptions. Drug Discov Today 8:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Yousif S, Chaves C, Potin S, Margaill I, Scherrmann JM, Decleves X (2012) Induction of P-glycoprotein and Bcrp at the rat blood–brain barrier following a subchronic morphine treatment is mediated through NMDA/COX-2 activation. J Neurochem 123:491–503

    Article  PubMed  CAS  Google Scholar 

  • Zaccolo M (2011) Spatial control of cAMP signalling in health and disease. Curr Opin Pharmacol 11:649–655

    Article  PubMed  CAS  Google Scholar 

  • Ziemann C, Riecke A, Rudell G, Oetjen E, Steinfelder HJ, Lass C, Kahl GF, Hirsch-Ernst KI (2006) The role of prostaglandin E receptor-dependent signaling via cAMP in Mdr1b gene activation in primary rat hepatocyte cultures. J Pharmacol Exp Ther 317:378–386

    Article  PubMed  CAS  Google Scholar 

  • Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Cilostazol was kindly provided by Otsuka Pharmaceutical Co., Ltd., Japan. This work was supported in part by a Grant-in-Aid for Scientific Research (C) (22590243) and a Grant-in-Aid for Young Scientists (B) (24790258) from the Japan Society for the Promotion of Science (JSPS), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Nakagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horai, S., Nakagawa, S., Tanaka, K. et al. Cilostazol Strengthens Barrier Integrity in Brain Endothelial Cells. Cell Mol Neurobiol 33, 291–307 (2013). https://doi.org/10.1007/s10571-012-9896-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9896-1

Keywords

Navigation