Skip to main content

Advertisement

Log in

Pitavastatin Strengthens the Barrier Integrity in Primary Cultures of Rat Brain Endothelial Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Statins have a neuroprotective effect in neurological diseases, a pleiotropic effect possibly related to blood–brain barrier (BBB) function. We investigated the effect of pitavastatin on barrier functions of an in vitro BBB model with primary cultures of rat brain capillary endothelial cells (RBEC). Pitavastatin increased the transendothelial electrical resistance (TEER), an index of barrier tightness of interendothelial tight junctions (TJs), at a concentration of 10−8 M, and decreased the endothelial permeability for sodium fluorescein through the RBEC monolayer. The increase in TEER was significantly reduced in the presence of isoprenoid geranylgeranyl pyrophosphate, whereas farnesyl pyrophosphate had no effect on TEER. Our immunocytochemical and Western blot analyses revealed that treatment with pitavastatin enhanced the expression of claudin-5, a main functional protein of TJs. Our data indicate that pitavastatin strengthens the barrier integrity in primary cultures of RBEC. The BBB-stabilizing effect of pitavastatin may be mediated partly through inhibition of the mevalonate pathway and subsequent up-regulation of claudin-5 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25:5–23

    Article  PubMed  Google Scholar 

  • Abbott NJ, Ronnback L, Hannson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Amarenco P, Bogousslavsky J, Callahan A III, Goldstein LB, Hennerici M, Rudolph AE, Sillesen H, Simunovic L, Szarek M, Welch KM, Zivin JA (2006) High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med 355:549–559

    Article  CAS  PubMed  Google Scholar 

  • Bolego C, Poli A, Cignarella A, Catapano AL, Paoletti R (2002) Novel statins: pharmacological and clinical results. Cardiovasc Drugs Ther 16:251–257

    Article  CAS  PubMed  Google Scholar 

  • Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, Fenart L (2007) Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov 6:650–661

    Article  CAS  PubMed  Google Scholar 

  • Crouse JR III, Byington RP, Furberg CD (1998) HMG-CoA reductase inhibitor therapy and stroke risk reduction: an analysis of clinical trials data. Atherosclerosis 138:11–24

    Article  CAS  PubMed  Google Scholar 

  • Deli MA, Szabo C, Dung N, Joo F (1997) Immunohistochemical and electron microscopy detections on primary cultures of rat cerebral endothelial cells. In: Boer AG, Sutanto W (eds) Drug transport across the blood-brain barrier: In vivo and in vitro techniques. Harwood Academic Publishers, Amsterdam, pp 23–28

    Google Scholar 

  • Deli MA, Ábrahám CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood-brain barrier models: physiology, pathology and pharmacology. Cell Mol Neurobiol 25:59–127

    Article  PubMed  Google Scholar 

  • Di Napoli P, Di Muzio M, Maggi A, Taccardi AA, Conti P, Barsotti A (2000) Simvastatin reduces postischemic coronary dysfunction: ultrastructural and functional findings after acute administration. Microvasc Res 59:181–185

    Article  PubMed  Google Scholar 

  • Furuse M, Tsukita S (2006) Claudins in occluding junctions of humans and flies. Trends Cell Biol 16:181–188

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Prog Biophys Mol Biol 81:1–44

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Nakao S, Nakaoke R, Nakagawa S, Kitagawa N, Niwa M (2004) Effects of hypoxia on endothelial/pericytic co-culture model of the blood–brain barrier. Regul Pept 123:77–83

    Article  CAS  PubMed  Google Scholar 

  • Hiu T, Nakagawa S, Hayashi K, Kitagawa N, Tsutsumi K, Kawakubo J, Honda M, Suyama K, Nagata I, Niwa M (2008) Tissue plasminogen activator enhances the hypoxia/reoxygenation-induced impairment of the blood-brain barrier in a primary culture of rat brain endothelial cells. Cell Mol Neurobiol 28:1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Hoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A, Tilling T, Galla HJ (1998) Hydrocortisone reinforces the blood-brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun 244:312–316

    Article  CAS  PubMed  Google Scholar 

  • Honda M, Nakagawa S, Hayashi K, Kitagawa N, Tsutsumi K, Nagata I, Niwa M (2006) Adrenomedullin improves the blood-brain barrier function through the expression of claudin-5. Cell Mol Neurobiol 26:109–118

    Article  CAS  PubMed  Google Scholar 

  • Iglesias P, Diez JJ (2003) New drugs for the treatment of hypercholesterolaemia. Expert Opin Investig Drugs 12:1777–1789

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki T, Chiba H, Kojima T, Fujibe M, Soma T, Miyajima H, Nagasawa K, Wada I, Sawada N (2003) Cyclic AMP induces phsophorylation of claudin-5 gene in blood-brain barrier endothelial cells via protein-kinase A-dependent and–independent pathway. Exp Cell Res 290:275–288

    Article  CAS  PubMed  Google Scholar 

  • Kajinami K, Koizumi J, Ueda K, Miyamoto S, Takegoshi T, Mabuchi H (2000) Effects of NK-104, a new hydroxymethylglutaryl-coenzyme reductase inhibitor, on low-density lipoprotein cholesterol in heterozygous familial hypercholesterolemia. Hokuriku NK-104 Study Group. Am J Cardiol 85:178–183

    Article  CAS  PubMed  Google Scholar 

  • Katsumoto M, Shingu T, Kuwashima R, Nakata A, Nomura S, Chayama K (2005) Biphasic effect of HMG-CoA reductase inhibitor, pitavastatin, on vascular endothelial cells and angiogenesis. Circ J 69:1547–1555

    Article  CAS  PubMed  Google Scholar 

  • Koto T, Takubo K, Ishida S, Shinoda H, Inoue M, Tsubota K, Okada Y, Ikeda E (2007) Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol 170:1389–1397

    Article  CAS  PubMed  Google Scholar 

  • Kuhlmann CR, Lessmann V, Luhmann HJ (2006) Fluvastatin stabilizes the blood-brain barrier in vitro by nitric oxide-dependent dephosphorylation of myosin light chains. Neuropharmacology 51:907–913

    Article  CAS  PubMed  Google Scholar 

  • Laufs U, La Fata V, Plutzky J, Liao JK (1998) Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97:1129–1135

    CAS  PubMed  Google Scholar 

  • Masamura K, Oida K, Kanehara H, Suzuki J, Horie S, Ishii H, Miyamori I (2003) Pitavastatin-induced thrombomodulin expression by endothelial cells acts via inhibition of small G proteins of the Rho family. Arterioscler Thromb Vasc Biol 23:512–517

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi J, Takai Y (2005) Molecular perspective on tight-junction assembly and epithelial polarity. Adv Drug Deliv Rev 57:815–855

    Article  CAS  PubMed  Google Scholar 

  • Morita K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M (2007) Pericytes from brain microvessels strenghthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27:687–694

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263

    Article  CAS  PubMed  Google Scholar 

  • Nassief A, Marsh JD (2008) Statin therapy for stroke prevention. Stroke 39:1042–1048

    Article  CAS  PubMed  Google Scholar 

  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Kong D, Iruela-Arispe L, Begley U, Tang D, Galper JB (2002) 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ Res 91:143–150

    Article  CAS  PubMed  Google Scholar 

  • Perriere N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO, Deli MA, Roux F (2005) Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood-brain barrier-specific properties. J Neurochem 93:279–289

    Article  CAS  PubMed  Google Scholar 

  • Persidsky Y, Heilman D, Haorah J, Zelivyanskaya M, Persidsky R, Weber GA, Simokawa H, Kaibuchi K, Ikezu T (2006) Rho-mediated regulation of tight junctions during monocyte migration across the blood-brain barrier in HIV-1 encehalitis (HIV). Blood 107:4770–4780

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Giri S, Nath N, Singh I, Singh AK (2005) Inhibition of phosphoinositide 3 kinase-Akt (protein kinase B)-nuclear factor-kappa B pathway by lovastatin limits endothelial-monocyte cell interaction. J Neurochem 94:204–214

    Article  CAS  PubMed  Google Scholar 

  • Rezaie-Majd A, Maca T, Bucek RA, Valent P, Muller MR, Husslein P, Kashanipour A, Minar E, Baghestanian M (2002) Simvastatin reduces expression of cytokines interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 in circulating monocytes from hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 22:1194–1199

    Article  PubMed  Google Scholar 

  • Saito Y, Yamada N, Teramoto T, Itakura H, Hata Y, Nakaya N, Mabuchi H, Tushima M, Sasaki J, Ogawa N, Goto Y (2002) A randomized, double-blind trial comparing the efficacy and safety of pitavastatin versus pravastatin in patients with primary hypercholesterolemia. Atherosclerosis 162:373–379

    Article  CAS  PubMed  Google Scholar 

  • Sandoval KE, Witt KA (2008) Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 32:200–219

    Article  CAS  PubMed  Google Scholar 

  • Schonbeck U, Libby P (2004) Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents? Circulation 109:II18–II26

    Article  PubMed  Google Scholar 

  • Soma T, Chiba H, Kato-Mori Y, Wada T, Yamashita T, Kojima T, Sawada N (2004) Thr (207) of claudin-5 is involved in size-selective loosening of the endothelial barrier by cyclic AMP. Exp Cell Res 300:202–212

    Article  CAS  PubMed  Google Scholar 

  • Van Itallie CM, Anderson JM (2006) Claudins and epithelial paracellular transport. Annu Rev Physiol 68:403–429

    Article  PubMed  Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood–brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105:586–592

    CAS  PubMed  Google Scholar 

  • Yamamoto M, Ramirez SH, Sato S, Kiyota T, Cerny RL, Kaibuchi K, Persidsky Y, Ikezu T (2008) Phosphorylation of caludin-5 and occluding by Rho kinase in brain endothelial cells. Am J Pathol 172:521–533

    Article  CAS  PubMed  Google Scholar 

  • Youdim KA, Avdeef A, Abbott NJ (2003) In vitro trans-monolayer permeability calculations: often forgotten assumptions. Drug Discov Today 8:997–1003

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic BV (2008) The blood–brain barrier in health and neurodegenerative disorders. Neuron 57:178–201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Pitavastatin was obtained as a generous gift from Kowa Co., Ltd., Japan. We wish to thank Yasuko Yamashita, Takanori Shimono, and Tsuyoshi Izumo for their critical reviews of the manuscript and outstanding professional guidance. This work was supported by a Grant-in-Aid for Scientific Research (C) (21591848) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Morofuji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morofuji, Y., Nakagawa, S., So, G. et al. Pitavastatin Strengthens the Barrier Integrity in Primary Cultures of Rat Brain Endothelial Cells. Cell Mol Neurobiol 30, 727–735 (2010). https://doi.org/10.1007/s10571-010-9497-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9497-9

Keywords

Navigation