Skip to main content
Log in

Temporal-Spatial Expressions of Spy1 in Rat Sciatic Nerve After Crush

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

As a novel cell cycle protein, Spy1 enhances cell proliferation, promotes the G1/S transition as well as inhibits apoptosis in response to UV irradiation. Spy1 levels are tightly regulated during mammary development, and overexpression of Spy1 accelerates tumorigenesis in vivo. But little is known about the role of Spy1 in the pathological process of damage and regeneration of the peripheral nervous system. Here we established a rat sciatic nerve crush (SNC) model to examine the spatiotemporal expression of Spy1. Spy1 expression was elevated gradually after sciatic nerve crush and peaked at day 3. The alteration was due to the increased expression of Spy1 in axons and Schwann cells after SNC. Spy1 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, Spy1 largely localized in axons in the crushed segment, but rarely co-localized with GAP43. These findings suggested that Spy1 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SCs:

Schwann cells

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

PNS:

Peripheral nervous system

SNC:

Sciatic nerve crush

RT-PCR:

Reverse transcriptase PCR

GAP43:

Growth-associated protein 43

CDKs:

Cyclin-dependent kinases

References

  • Aigner L, Arber S, Kapfhammer JP, Laux T, Schneider C, Botteri F, Brenner HR, Caroni P (1995) Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell 83(2):269–278

    Article  PubMed  CAS  Google Scholar 

  • Barnes EA, Porter LA, Lenormand JL, Dellinger RW, Donoghue DJ (2003) Human Spy1 promotes survival of mammalian cells following DNA damage. Cancer Res 63(13):3701–3707

    PubMed  CAS  Google Scholar 

  • Chang IA, Oh MJ, Kim MH, Park SK, Kim BG, Namgung U (2012) Vimentin phosphorylation by Cdc2 in Schwann cell controls axon growth via beta1-integrin activation. FASEB J 26(6):2401–2413

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Qin J, Cheng C, Niu S, Liu Y, Shi S, Liu H, Shen A (2008) Spatiotemporal expression of SSeCKS in injured rat sciatic nerve. Anat Rec (Hoboken) 291(5):527–537

    Article  CAS  Google Scholar 

  • Dinarina A, Perez LH, Davila A, Schwab M, Hunt T, Nebreda AR (2005) Characterization of a new family of cyclin-dependent kinase activators. Biochem J 386(Pt 2):349–355

    PubMed  CAS  Google Scholar 

  • Erturk A, Hellal F, Enes J, Bradke F (2007) Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J Neurosci 27(34):9169–9180

    Article  PubMed  Google Scholar 

  • Farah MH, Pan BH, Hoffman PN, Ferraris D, Tsukamoto T, Nguyen T, Wong PC, Price DL, Slusher BS, Griffin JW (2011) Reduced BACE1 activity enhances clearance of myelin debris and regeneration of axons in the injured peripheral nervous system. J Neurosci 31(15):5744–5754

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JW, Keynes RJ (1990) Peripheral nerve regeneration. Annu Rev Neurosci 13:43–60

    Article  PubMed  CAS  Google Scholar 

  • Frey D, Laux T, Xu L, Schneider C, Caroni P (2000) Shared and unique roles of CAP23 and GAP43 in actin regulation, neurite outgrowth, and anatomical plasticity. J Cell Biol 149(7):1443–1454

    Article  PubMed  CAS  Google Scholar 

  • Gao S, Fei M, Cheng C, Yu X, Chen M, Shi S, Qin J, Guo Z, Shen A (2008) Spatiotemporal expression of PSD-95 and nNOS after rat sciatic nerve injury. Neurochem Res 33(6):1090–1100

    Article  PubMed  CAS  Google Scholar 

  • Geremia NM, Pettersson LM, Hasmatali JC, Hryciw T, Danielsen N, Schreyer DJ, Verge VM (2010) Endogenous BDNF regulates induction of intrinsic neuronal growth programs in injured sensory neurons. Exp Neurol 223(1):128–142

    Article  PubMed  CAS  Google Scholar 

  • Golipour A, Myers D, Seagroves T, Murphy D, Evan GI, Donoghue DJ, Moorehead RA, Porter LA (2008) The Spy1/RINGO family represents a novel mechanism regulating mammary growth and tumorigenesis. Cancer Res 68(10):3591–3600

    Article  PubMed  CAS  Google Scholar 

  • Goslin K, Schreyer DJ, Skene JH, Banker G (1990) Changes in the distribution of GAP-43 during the development of neuronal polarity. J Neurosci 10(2):588–602

    PubMed  CAS  Google Scholar 

  • Hall S (2005) The response to injury in the peripheral nervous system. J Bone Joint Surg Br 87(10):1309–1319

    Article  PubMed  CAS  Google Scholar 

  • Hammarlund M, Nix P, Hauth L, Jorgensen EM, Bastiani M (2009) Axon regeneration requires a conserved MAP kinase pathway. Science 323(5915):802–806

    Article  PubMed  CAS  Google Scholar 

  • Han IS, Seo TB, Kim KH, Yoon JH, Yoon SJ, Namgung U (2007) Cdc2-mediated Schwann cell migration during peripheral nerve regeneration. J Cell Sci 120(Pt 2):246–255

    Article  PubMed  CAS  Google Scholar 

  • Heinen A, Kremer D, Gottle P, Kruse F, Hasse B, Lehmann H, Hartung HP, Kury P (2008) The cyclin-dependent kinase inhibitor p57kip2 is a negative regulator of Schwann cell differentiation and in vitro myelination. Proc Natl Acad Sci U S A 105(25):8748–8753

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Liu Y, Chen Y, Yu X, Yang J, Lu M, Lu Q, Ke Q, Shen A, Yan M (2009) Peripheral nerve lesion induces an up-regulation of Spy1 in rat spinal cord. Cell Mol Neurobiol 29(3):403–411

    Article  PubMed  Google Scholar 

  • Ide C (1996) Peripheral nerve regeneration. Neurosci Res 25(2):101–121

    PubMed  CAS  Google Scholar 

  • Ji Y, Tao T, Cheng C, Yang H, Wang Y, Yang J, Liu H, He X, Wang H, Shen A (2010) SSeCKS is a suppressor in Schwann cell differentiation and myelination. Neurochem Res 35(2):219–226

    Article  PubMed  CAS  Google Scholar 

  • Karaiskou A, Perez LH, Ferby I, Ozon R, Jessus C, Nebreda AR (2001) Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins. J Biol Chem 276(38):36028–36034

    Article  PubMed  CAS  Google Scholar 

  • Ke Q, Ji J, Cheng C, Zhang Y, Lu M, Wang Y, Zhang L, Li P, Cui X, Chen L, He S, Shen A (2009) Expression and prognostic role of Spy1 as a novel cell cycle protein in hepatocellular carcinoma. Exp Mol Pathol 87(3):167–172

    Article  PubMed  CAS  Google Scholar 

  • Lenormand JL, Dellinger RW, Knudsen KE, Subramani S, Donoghue DJ (1999) Speedy: a novel cell cycle regulator of the G2/M transition. EMBO J 18(7):1869–1877

    Article  PubMed  CAS  Google Scholar 

  • Li H, Yang H, Liu Y, Huan W, Zhang S, Wu G, Lu Q, Wang Q, Wang Y (2011) The cyclin-dependent kinase inhibitor p27(Kip1) is a positive regulator of Schwann cell differentiation in vitro. J Mol Neurosci 45(2):277–283

    Article  PubMed  CAS  Google Scholar 

  • Li H, Deng J, Chen H, Chen T, Cao X, Hou H, Huan W, Zhang G, Yu B, Wang Y (2012) Dynamic changes of PIRH2 and p27kip1 expression in injured rat sciatic nerve. Neurol Sci 33(4):749–757

    Article  PubMed  CAS  Google Scholar 

  • Makwana M, Raivich G (2005) Molecular mechanisms in successful peripheral regeneration. FEBS J 272(11):2628–2638

    Article  PubMed  CAS  Google Scholar 

  • McAndrew CW, Gastwirt RF, Meyer AN, Porter LA, Donoghue DJ (2007) Spy1 enhances phosphorylation and degradation of the cell cycle inhibitor p27. Cell Cycle 6(15):1937–1945

    Article  PubMed  CAS  Google Scholar 

  • McAndrew CW, Gastwirt RF, Donoghue DJ (2009) The atypical CDK activator Spy1 regulates the intrinsic DNA damage response and is dependent upon p53 to inhibit apoptosis. Cell Cycle 8(1):66–75

    Article  PubMed  CAS  Google Scholar 

  • Morris GF, Mathews MB (1989) Regulation of proliferating cell nuclear antigen during the cell cycle. J Biol Chem 264(23):13856–13864

    PubMed  CAS  Google Scholar 

  • Muller HW (1996) Gene expression in nerve regeneration. Diabet Med 13(7):682

    Article  PubMed  CAS  Google Scholar 

  • Porter LA, Dellinger RW, Tynan JA, Barnes EA, Kong M, Lenormand JL, Donoghue DJ (2002) Human Speedy: a novel cell cycle regulator that enhances proliferation through activation of Cdk2. J Cell Biol 157(3):357–366

    Article  PubMed  CAS  Google Scholar 

  • Porter LA, Kong-Beltran M, Donoghue DJ (2003) Spy1 interacts with p27Kip1 to allow G1/S progression. Mol Biol Cell 14(9):3664–3674

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro-Resende VT, Koenig B, Nichterwitz S, Oberhoffner S, Schlosshauer B (2009) Strategies for inducing the formation of bands of Bungner in peripheral nerve regeneration. Biomaterials 30(29):5251–5259

    Article  PubMed  CAS  Google Scholar 

  • Tikoo R, Zanazzi G, Shiffman D, Salzer J, Chao MV (2000) Cell cycle control of Schwann cell proliferation: role of cyclin-dependent kinase-2. J Neurosci 20(12):4627–4634

    PubMed  CAS  Google Scholar 

  • Van der Zee CE, Nielander HB, Vos JP, Lopes da Silva S, Verhaagen J, Oestreicher AB, Schrama LH, Schotman P, Gispen WH (1989) Expression of growth-associated protein B-50 (GAP43) in dorsal root ganglia and sciatic nerve during regenerative sprouting. J Neurosci 9(10):3505–3512

    PubMed  Google Scholar 

  • Vargas ME, Watanabe J, Singh SJ, Robinson WH, Barres BA (2010) Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury. Proc Natl Acad Sci U S A 107(26):11993–11998

    Article  PubMed  CAS  Google Scholar 

  • Verhaagen J, Oestreicher AB, Gispen WH, Margolis FL (1989) The expression of the growth associated protein B50/GAP43 in the olfactory system of neonatal and adult rats. J Neurosci 9(2):683–691

    PubMed  CAS  Google Scholar 

  • Yankner BA, Benowitz LI, Villa-Komaroff L, Neve RL (1990) Transfection of PC12 cells with the human GAP-43 gene: effects on neurite outgrowth and regeneration. Brain Res Mol Brain Res 7(1):39–44

    Article  PubMed  CAS  Google Scholar 

  • Yoo S, van Niekerk EA, Merianda TT, Twiss JL (2010) Dynamics of axonal mRNA transport and implications for peripheral nerve regeneration. Exp Neurol 223(1):19–27

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Shen A, Ke Q, Zhao W, Yan M, Cheng C (2012) Spy1 is frequently overexpressed in malignant gliomas and critically regulates the proliferation of glioma cells. J Mol Neurosci 47(3):485–494

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Yan Y, Ke K, Wu X, Gao Y, Shen A, Li J, Kang L, Zhang G, Wu Q, Yang H (2012) Dynamic change of numbl expression after sciatic nerve crush and its role in Schwann cell differentiation. J Neurosci Res 90(8):1557–1565

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.31071288, No.81171140 and No.81172879) and funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Nantong University graduate scientific and technological innovation projects (Ykc12001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingxing Gu.

Additional information

Jianhua Cao and Jiao Yang contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J., Yang, J., Wang, Y. et al. Temporal-Spatial Expressions of Spy1 in Rat Sciatic Nerve After Crush. Cell Mol Neurobiol 33, 213–221 (2013). https://doi.org/10.1007/s10571-012-9887-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9887-2

Keywords

Navigation