Skip to main content
Log in

Spatiotemporal Expression of PSD-95 and nNOS After Rat Sciatic Nerve Injury

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuronal nitric oxide synthase (nNOS) has been implicated to influence peripheral nerve lesion and regeneration. Post-synaptic density-95 (PSD-95) is one of nNOS-anchoring proteins and plays an important role in specifying the sites of reaction of NO in nervous system. Here we established a rat sciatic nerve crush (SNC) model to examine the spatiotemporal expression of PSD-95 and nNOS. At gene levels, PSD-95 mRNA diminished shortly after crush, and significantly elevated from 2 days to 2 weeks, whereas nNOS decreased progressively post-operation, reached the valley at 1 day, and markedly up-regulated from 1 to 2 weeks after SNC. The expression of both molecules returned to the control level at 4 weeks post-injury. At protein levels, PSD-95 and nNOS underwent the similar changes as their gene expression except for a time lag during up-regulating. At their peak expression, PSD-95 co-labeled with nNOS in Schwann cells (SCs) of sciatic nerve within 0.5 mm from the lesion site, but had few colocalization in axons. In addition, the interaction between PSD-95 and nNOS enhanced significantly at 2 weeks after SNC. These results suggest a correlation of PSD-95 up-regulation with nNOS in reactive SCs of crushed sciatic nerve, which may lead to understanding the function of PSD-95 during peripheral nerve regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Valero-Cabré A, Tsironis K, Skouras E et al (2004) Peripheral and spinal motor reorganization after nerve injury and repair. J Neurotrauma 21:95–108

    Article  PubMed  Google Scholar 

  2. Udina E, Voda J, Gold BG et al (2003) Comparative dose-dependence study of FK506 on transacted mouse sciatic nerve repaired by allograft or xenograft. J Peripher Nerv Syst 8:145–154

    Article  PubMed  Google Scholar 

  3. Thippeswamy T, Jain RK, Mumtaz N et al (2001) Inhibition of neuronal nitric oxide synthase results in neurodegenerative changes in the axotomised dorsal root ganglion neurons: evidence for a neuroprotective role of nitric oxide in vivo. Neurosci Res 40:37–44

    Article  PubMed  CAS  Google Scholar 

  4. Keilhoff G, Fansa H, Wolf G (2002a) Neuronal nitric oxide synthase is the dominant nitric oxide supplier for the survival of dorsal root ganglia after peripheral nerve axotomy. J Chem Neuroanat 2:181–187

    Article  Google Scholar 

  5. Keilhoff G, Fansa H, Wolf G (2002b) Differences in peripheral nerve degeneration/regeneration between wild-type and neuronal nitric oxide synthase knockout mice. J Neurosci Res 68:432–441

    Article  PubMed  CAS  Google Scholar 

  6. Keilhoff G, Fansa H, Wolf G (2003) Nitric oxide synthase, an essential factor in peripheral nerve regeneration. Cell Mol Biol (Noisy-le-grand) 49:885–897

    CAS  Google Scholar 

  7. Keilhoff G, Fansa H, Wolf G (2004) Neuronal NOS deficiency promotes apoptotic cell death of spinal cord neurons after peripheral nerve transection. Nitric Oxide 10:101–111

    Article  PubMed  CAS  Google Scholar 

  8. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  PubMed  CAS  Google Scholar 

  9. Dedio J, KÖnig P, Wohlfart P et al (2001) NOSIP, a novel modulator of endothelial nitric oxide synthase activity. FASEB J 15:79–89

    Article  PubMed  CAS  Google Scholar 

  10. Jaffrey SR, Benfenati F, Snowman AM et al (2002) Neuronal nitric-oxide synthase localization mediated by a ternary complex with synapsin and CAPON. Proc Natl Acad Sci USA 99:3199–3204

    Article  PubMed  CAS  Google Scholar 

  11. Kornau HC, Schenker LT, Kennedy MB et al (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269:1737–1740

    Article  PubMed  CAS  Google Scholar 

  12. Fanning AS, Anderson JM (1996) Protein-protein interactions: PDZ domain networks. Curr Biol 6:1385–1388

    Article  PubMed  CAS  Google Scholar 

  13. Brenman JE, Chao DS, Gee SH et al (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84:757–767

    Article  PubMed  CAS  Google Scholar 

  14. Jaffrey SR, Snowman AM, Eliasson MJ et al (1998) CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron 20:115–124

    Article  PubMed  CAS  Google Scholar 

  15. Cho KO, Hunt CA, Kennedy MB (1992) The rat brain postsynaptic density fraction contains a homolog of the Drosophila disc-large tumor suppressor protein. Neuron 9:929–942

    Article  PubMed  CAS  Google Scholar 

  16. Kistner U, Wenzel BM, Veh RW et al (1993) SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. J Biol Chem 268:4580–4583

    PubMed  CAS  Google Scholar 

  17. Shen M, Pak DT (2000) Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu Rev Physiol 62:755–778

    Article  Google Scholar 

  18. Christopherson KS, Hillier BJ, Lim WA et al (1999) PSD-95 assembles a ternary complex with the N-Methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274:27467–27473

    Article  PubMed  CAS  Google Scholar 

  19. Tezuka T, Umemori H, Akiyama T et al (1999) PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc Natl Acad Sci USA 96:435–440

    Article  PubMed  CAS  Google Scholar 

  20. Scannevin RH, Huganir RL (2000) Postsynaptic organization and regulation of excitatory synapse. Nat Neurosci 1:133–141

    Article  CAS  Google Scholar 

  21. El-Husseini AE, Schnell E, Chetkovich DM et al (2000) PSD-95 involvement in maturation of excitatory synapses. Science 290:1364–1368

    PubMed  CAS  Google Scholar 

  22. Beique JC, Andrade R (2003) PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex. J Physiol 546:859–867

    Article  PubMed  CAS  Google Scholar 

  23. Ehrlich I, Klein M, Rumpel S et al (2007) PSD-95 is required for activity-driven synapse stabilization. Proc Natl Acad Sci USA 104:4176–4181

    Article  PubMed  CAS  Google Scholar 

  24. Kim E, Niethammer M, Rothschild A et al (1995) Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 378:85–88

    Article  PubMed  CAS  Google Scholar 

  25. Sattler R, Xiong Z, Lu WY et al (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284:1845–1848

    Article  PubMed  CAS  Google Scholar 

  26. Aarts M, Liu Y, Liu L et al (2002) Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science 298:846–850

    Article  PubMed  CAS  Google Scholar 

  27. Tao F, Tao YX, Gonzalez JA et al (2001) Knockdown of PSD-95/SAP90 delays the development of neuropathic pain in rats. Neuroreport 12:3251–3255

    Article  PubMed  CAS  Google Scholar 

  28. Tao YX, Huang YZ, Me L et al (2000) Expression of PSD-95/SAP90 is critical for NMDA receptor-mediated thermal hyperalgesia in the spinal cord. Neuroscience 98:201–206

    Article  PubMed  CAS  Google Scholar 

  29. Liaw WJ, Zhang B, Tao F et al (2004) Knockdown of spinal cord postsynaptic density protein-95 prevents the development of morphine tolerance in rats. Neuroscience 123:11–15

    Article  PubMed  CAS  Google Scholar 

  30. Yan XB, Song B, Zhang GY (2004) Postsynaptic density protein 95 mediates Ca2+ /calmodulin-dependent protein kinase II-activated serine phosphorylation of neuronal nitric oxide synthase during brain ischemia in rat hippocampus. Neurosci Lett 355:197–200

    Article  PubMed  CAS  Google Scholar 

  31. Tiffany AM, Manganas LN, Kim E et al (2000) PSD-95 and SAP97 exhibit distinct mechanisms for regulating K channel surface expression and clustering. J Cell Biol 148:147–158

    Article  PubMed  CAS  Google Scholar 

  32. Rasband MN, Trimmer JS (2001) Developmental clustering of ion channels at and near the node of ranvier. Dev Biol 236:5–16

    Article  PubMed  CAS  Google Scholar 

  33. Rasband MN, Park EW, Zhen D et al (2002) Clustering of neuronal potassium channels is independent of their interaction with PSD-95. J Cell Biol 159:663–672

    Article  PubMed  CAS  Google Scholar 

  34. Sawada T, Sano M, Omura T et al (2007) Spatiotemporal quantification of tumor necrosis factor-alpha and interleukin-10 after crush injury in rat sciatic nerve utilizing immunohistochemistry. Neurosci Lett 417:55–60

    Article  PubMed  CAS  Google Scholar 

  35. Griffith OW, Stuehr DJ (1995) Nitric oxide synthases: properities and catalytic mechanism. Annu Rev Physiol 57:707–736

    Article  PubMed  CAS  Google Scholar 

  36. González-Hernández T, Rustion A (1999) Expression of three forms of nitric oxide synthase in peripheral nerve regeneration. J Neurosci Res 55:198–207

    Article  PubMed  Google Scholar 

  37. Cheng C, Zochodne DW (2002) In vivo proliferation, migration and phenotypic changes of Schwann cells in the presence of myelinated fibers. Neuroscience 115:321–329

    Article  PubMed  CAS  Google Scholar 

  38. Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671–682

    Article  PubMed  CAS  Google Scholar 

  39. Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209–233

    Article  PubMed  CAS  Google Scholar 

  40. Meyer M, Matsuoka I, Wetmore C et al (1992) Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol 119:45–54

    Article  PubMed  CAS  Google Scholar 

  41. Carroll SL, Miller ML, Frohnert PW et al (1997) Expression of neuregulins and their putative receptors, ErbB2 and ErbB3, is induced during Wallerian degeneration. J Neurosci 17:1642–1659

    PubMed  CAS  Google Scholar 

  42. Höke A, Cheng C, Zochodne DW (2000) Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats. Neuroreport 11:1651–1654

    Article  PubMed  Google Scholar 

  43. Qi WN, Yan ZQ, Whang PG et al (2001) Gene and protein expressions of nitric oxide synthases in ischemia-reperfused peripheral nerve of the rat. Am J Physiol Cell Physiol 281:C849–C856

    PubMed  CAS  Google Scholar 

  44. Baba H, Akita H, Ishibashi T et al (1999) Completion of myelin compaction, but not the attachment of oligodendroglial processes triggers K+ channel clustering. J Neurosci Res 58:752–764

    Article  PubMed  CAS  Google Scholar 

  45. Bunge RP (1993) Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Curr Opin Neurobiol 3:805–809

    Article  PubMed  CAS  Google Scholar 

  46. Ide C (1996) Peripheral nerve regeneration. Neurosci Res 25:101–121

    PubMed  CAS  Google Scholar 

  47. Fu SY, Gordon T (1997) The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 14:67–116

    Article  PubMed  CAS  Google Scholar 

  48. Itoh K, Fushiki S, Kamiguchi H et al (2005) Disrupted Schwann cell-axon interactions in peripheral nerves of mice with altered L1-integrin interactions. Mol Cell Neurosci 30:624–629

    Article  PubMed  CAS  Google Scholar 

  49. Thornton MR, Mantovani C, Birchall MA et al (2005) Quantification of N-CAM and N-cadherin expression in axotomized and crushed rat sciatic nerve. J Anat 206:69–78

    Article  PubMed  CAS  Google Scholar 

  50. Irie M, Hata Y, Takeuchi M et al (1997) Binding of neuroligins to PSD-95. Science 277:1511–1515

    Article  PubMed  CAS  Google Scholar 

  51. Dean C, Scholl FG, Choih J et al (2003) Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci 6:708–716

    Article  PubMed  CAS  Google Scholar 

  52. Scheiffele P, Fan J, Choih J et al (2000) Neuroligin expressed in nonneuronal cells triggers presynapticdevelopment in contacting axons. Cell 101:657–669

    Article  PubMed  CAS  Google Scholar 

  53. Huang YZ, Won S, Ali DW et al (2000) Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 26:443–455

    Article  PubMed  CAS  Google Scholar 

  54. Lyons DA, Pogoda HM, Voas MG et al (2005) erbb3 and erbb2 are essential for Schwann cell migration and myelination in zebrafish. Curr Biol 15:513–524

    Article  PubMed  CAS  Google Scholar 

  55. Rogério F, Teixeira SA, de Souza Queiroz L et al (2001) Expression of neuronal isoform of nitric oxide synthase in spinal neurons of neonatal rats after sciatic nerve transection. Neurosci Lett 307:61–64

    Article  PubMed  Google Scholar 

  56. Cheng C, Chen M, Shi S et al (2007) Effect of peripheral axotomy on gene expression of NIDD in rat neural tissues. J Mol Neurosci 32:199–206

    Article  PubMed  CAS  Google Scholar 

  57. Martin LJ, Chen K, Liu Z et al (2005) Adult motor neuron apoptosis is mediated by nitric oxide and Fas death receptor linked by DNA damage and p53 activation. J Neurosci 25:6449–6459

    Article  PubMed  CAS  Google Scholar 

  58. Taylor V, Suter U (1997) Molecular biology of axon-glia interactions in the peripheral nervous system. Prog Nucleic Acid Res Mol Biol 56:225–256

    Article  PubMed  CAS  Google Scholar 

  59. Kury P, Stoll G, Muller HW (2001) Molecular mechanisms of cellular interactions in peripheral nerve regeneration. Curr Opin Neurol 14:635–639

    Article  PubMed  CAS  Google Scholar 

  60. Che YH, Tamatani M, Tohyama M (2000) Changes in mRNA for post-synaptic density-95 (PSD-95) and carboxy-terminal PDZ ligand of neuronal nitric oxide synthase following facial nerve transection. Brain Res Mol Brain Res 76:325–335

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.30300099 and NO.30770488) and Natural Science Foundation of Jiangsu province (No.BK2003035 and No.BK2006547) and “Liu Da Ren Cai Gao Feng” Financial Assistant Project of Jiangsu Province (NO.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Shen.

Additional information

Shangfeng Gao and Min Fei contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, S., Fei, M., Cheng, C. et al. Spatiotemporal Expression of PSD-95 and nNOS After Rat Sciatic Nerve Injury. Neurochem Res 33, 1090–1100 (2008). https://doi.org/10.1007/s11064-007-9555-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9555-y

Keywords

Navigation