Skip to main content
Log in

Inhibitory Contribution to Suprathreshold Corticostriatal Responses: An Experimental and Modeling Study

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neostriatal neurons may undergo events of spontaneous synchronization as those observed in recurrent networks of excitatory neurons, even when cortical afferents are transected. It is necessary to explain these events because the neostriatum is a recurrent network of inhibitory neurons. Synchronization of neuronal activity may be caused by plateau-like depolarizations. Plateau-like orthodromic depolarizations that resemble up-states in medium spiny neostriatal neurons (MSNs) may be induced by a single corticostriatal suprathreshold stimulus. Slow synaptic depolarizations may last hundreds of milliseconds, decay slower than the monosynaptic glutamatergic synaptic potentials that induce them, and sustain repetitive firing. Because inhibitory inputs impinging onto MSNs have a reversal potential above the resting membrane potential but below the threshold for firing, they conform a type of “shunting inhibition”. This work asks if shunting GABAergic inputs onto MSNs arrive asynchronously enough as to help in sustaining the plateau-like corticostriatal response after a single cortical stimulus. This may help to begin explaining autonomous processing in the striatal micro-circuitry in the presence of a tonic excitatory drive and independently of spatio-temporally organized inputs. It is shown here that besides synaptic currents from AMPA/KA- and NMDA-receptors, as well as L-type intrinsic Ca2+- currents, inhibitory synapses help in maintaining the slow depolarization, although they accomplish the role of depressing firing at the beginning of the response. We then used a NEURON model of spiny cells to show that inhibitory synapses arriving asynchronously on the dendrites can help to simulate a plateau potential similar to that observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MSNs:

Medium spiny neostriatal neurons

CNQX:

6-Cyano-2,3-dihydroxy-7-nitro-quinoxaline

AMPA:

α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid

KA:

Kainate

GABA:

γ-Aminobutyric acid

SP:

Synaptic potential (mixed)

NMDA:

N-Methyl-d-aspartate

APV:

d-(−)-2-Amino-5-phosphonovaleric acid

I-V:

Current–voltage (relationship)

I-R:

Intensity–response (relationship)

IPSP:

Inhibitory postsynaptic potential

EPSP:

Excitatory postsynaptic potential

References

  • Adermark L, Lovinger DM (2007) Combined activation of L-type Ca2+ channels and synaptic transmission is sufficient to induce striatal long-term depression. J Neurosci 27:6781–6787. doi:10.1523/JNEUROSCI.0280-07.2007

    Article  PubMed  CAS  Google Scholar 

  • Akopian G, Walsh JP (2002) Corticostriatal paired-pulse potentiation produced by voltage-dependent activation of NMDA receptors and L-type Ca2+ channels. J Neurophysiol 87:157–165

    PubMed  CAS  Google Scholar 

  • Arshavsky YI, Deliagina TG, Orlovsky GN (1997) Pattern generation. Curr Opin Neurobiol 7:781–789. doi:10.1016/S0959-4388(97)80136-5

    Article  PubMed  CAS  Google Scholar 

  • Bargas J, Galarraga E, Aceves J (1991) Dendritic activity on neostriatal neurons as inferred from somatic intracellular recordings. Brain Res 539:159–163. doi:10.1016/0006-8993(91)90700-6

    Article  PubMed  CAS  Google Scholar 

  • Bargas J, Howe A, Eberwine J, Cao Y, Surmeier DJ (1994) Cellular and molecular characterization of Ca2+ currents in acutely isolated, adult rat neostriatal neurons. J Neurosci 14:6667–6686

    PubMed  CAS  Google Scholar 

  • Bargas J, Cervantes L, Galarraga E, Fraguela A (2003) Ion channels: keys to neuronal specialization. In: Arbib MA (ed) The handbook of brain theory and neural networks, 2nd edn. MIT Press, Massachusetts, pp 585–590

    Google Scholar 

  • Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45–56. doi:10.1038/nrn2044

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3:728–739. doi:10.1038/nrn920

    Article  PubMed  CAS  Google Scholar 

  • Bennett BD, Bolam JP (1994) Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat. Neurosci 62:707–719. doi:10.1016/0306-4522(94)90471-5

    Article  CAS  Google Scholar 

  • Berke JD (2008) Uncoordinated firing rate changes of striatal fast-spiking interneurons during behavioral task performance. J Neurosci 28:10075–10080. doi:10.1523/JNEUROSCI.2192-08.2008

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Centonze D, Gubellini P, Marfia GA, Pisani A, Sancesario G, Bernardi G (2000) Synaptic transmission in the striatum: from plasticity to neurodegeneration. Prog Neurobiol 61:231–265. doi:10.1016/S0301-0082(99)00030-1

    Article  PubMed  CAS  Google Scholar 

  • Carrillo-Reid L, Tecuapetla F, Tapia D, Hernandez-Cruz A, Galarraga E, Drucker-Colin R, Bargas J (2008) Encoding network states by striatal cell assemblies. J Neurophysiol 99:1435–1450. doi:10.1152/jn.01131.2007

    Article  PubMed  Google Scholar 

  • Carrillo-Reid L, Carrillo-Reid L, Tecuapetla F, Ibáñez-Sandoval O, Hernández-Cruz A, Galarraga E, Bargas J (2009) Activation of the cholinergic system endows compositional properties to striatal cell assemblies. J Neurophysiol 101:737–749. doi:10.1152/jn.90975.2008

    Article  PubMed  CAS  Google Scholar 

  • Carter AG, Sabatini BL (2004) State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44:483–493. doi:10.1016/j.neuron.2004.10.013

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Colwell CS, Itri JN, Chandler SH, Levine MS (1998) Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. J Neurophysiol 79:82–94

    PubMed  CAS  Google Scholar 

  • Cepeda C, André VM, Yamazaki I, Wu N, Kleiman-Weiner M, Levine MS (2008) Differential electrophysiological properties of dopamine D1 and D2 receptor-containing striatal medium-sized spiny neurons. Eur J NeuroSci 27:671–682. doi:10.1111/j.1460-9568.2008.06038.x

    Article  PubMed  Google Scholar 

  • Chapman DE, Keefe KA, Wilcox KS (2003) Evidence for functionally distinct synaptic NMDA receptors in ventromedial versus dorsolateral striatum. J Neurophysiol 89:69–80. doi:10.1152/jn.00342.2002

    Article  PubMed  CAS  Google Scholar 

  • Day M, Wokosin D, Plotkin JL, Tian X, Surmeier DJ (2008) Differential excitability and modulation of striatal medium spiny neuron dendrites. J Neurosci 28:11603–11614. doi:10.1523/JNEUROSCI.1840-08.2008

    Article  PubMed  CAS  Google Scholar 

  • Galarraga E, Hernandez-Lopez S, Reyes A, Barral J, Bargas J (1997) Dopamine facilitates striatal EPSPs through an L-type Ca2+ conductance. NeuroReport 8:2183–2186. doi:10.1097/00001756-199707070-00019

    Article  PubMed  CAS  Google Scholar 

  • Goto Y, O’Donnell P (2001) Network synchrony in the nucleus accumbens in vivo. J Neurosci 21:4498–4504

    PubMed  CAS  Google Scholar 

  • Graybiel AM (2005) The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol 15:638–644. doi:10.1016/j.conb.2005.10.006

    Article  PubMed  CAS  Google Scholar 

  • Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52:751–766. doi:10.1016/j.neuron.2006.11.008

    Article  PubMed  CAS  Google Scholar 

  • Gruber AJ, Solla SA, Surmeier DJ, Houk JC (2003) Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. J Neurophysiol 90:1095–1114. doi:10.1152/jn.00618.2002

    Article  PubMed  Google Scholar 

  • Gruber AJ, Powell EM, O’Donnell P (2009) Cortically activated interneurons shape spatial aspects of cortico-accumbens processing. J Neurophysiol. doi:10.1152/jn.91002.2008

  • Gustafson N, Gireesh-Dharmaraj E, Czubayko U, Blackwell KT, Plenz DA (2006) Comparative voltage and current-clamp analysis of feedback and feedforward synaptic transmission in the striatal microcircuit in vitro. J Neurophysiol 95:737–752. doi:10.1152/jn.00802.2005

    Article  PubMed  Google Scholar 

  • Guzmán JN, Hernández A, Galarraga E, Tapia D, Laville A, Vergara R, Aceves J, Bargas J (2003) Dopaminergic modulation of axon collaterals interconnecting spiny neurons of the rat striatum. J Neurosci 23:8931–8940

    PubMed  Google Scholar 

  • Hernández-López S, Bargas J, Surmeier DJ, Reyes A, Galarraga E (1997) D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+-conductance. J Neurosci 17:3334–3342

    PubMed  Google Scholar 

  • Hernández-López S, Tkatch T, Pérez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier DJ (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability through a novel PLCβ1/IP3/calcineurin signaling cascade. J Neurosci 20:8987–8995

    PubMed  Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209. doi:10.1162/neco.1997.9.6.1179

    Article  PubMed  CAS  Google Scholar 

  • Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123–135

    Article  PubMed  CAS  Google Scholar 

  • Ibañez-Sandoval O, Hernández A, Floran B, Galarraga E, Tapia D, Valdiosera R, Erlij D, Aceves J, Bargas J (2006) Control of the subthalamic innervation of substantia nigra pars reticulata by D1 and D2 dopamine receptors. J Neurophysiol 95:1800–1811. doi:10.1152/jn.01074.2005

    Article  PubMed  CAS  Google Scholar 

  • Jiang ZG, North RA (1991) Membrane properties and synaptic responses of rat striatal neurones in vitro. J Physiol 443:533–553

    PubMed  CAS  Google Scholar 

  • Kass JI, Mintz IM (2006) Silent plateau potentials, rhythmic bursts, and pacemaker firing: three patterns of activity that coexist in quadristable subthalamic neurons. Proc Natl Acad Sci USA 103:183–188. doi:10.1073/pnas.0506781102

    Article  PubMed  CAS  Google Scholar 

  • Kepecs A, Raghavachari S (2007) Gating information by two-state membrane potential fluctuations. J Neurophysiol 97:3015–3023. doi:10.1152/jn.01242.2006

    Article  PubMed  CAS  Google Scholar 

  • Kita H (1996) Glutamatergic and GABAergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations. Neurosci 70:925–940. doi:10.1016/0306-4522(95)00410-6

    Article  CAS  Google Scholar 

  • Koos T, Tepper JM, Wilson CJ (2004) Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum. J Neurosci 24:7916–7922. doi:10.1523/JNEUROSCI.2163-04.2004

    Article  PubMed  CAS  Google Scholar 

  • Kreitzer AC, Malenka RC (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 445:643–647. doi:10.1038/nature05506

    Article  PubMed  CAS  Google Scholar 

  • Lambe EK, Aghajanian GK (2007) Prefrontal cortical network activity: opposite effects of psychedelic hallucinogens and D1/D5 dopamine receptor activation. Neurosci 145:900–910. doi:10.1016/j.neuroscience.2006.12.048

    Article  CAS  Google Scholar 

  • Lemus-Aguilar I, Bargas J, Tecuapetla F, Galarraga E, Carrillo-Reid L (2006) Diseño modular de instrumentación virtual para la manipulación y el análisis de señales electrofisiológicas. Rev Mex Ing Biomed 27:82–92

    Google Scholar 

  • Li L, Murphy TH, Hayden MR, Raymond LA (2004) Enhanced striatal NR2B-containing N-methyl-d-aspartate receptor-mediated synaptic currents in a mouse model of Huntington disease. J Neurophysiol 92:2738–2746. doi:10.1152/jn.00308.2004

    Article  PubMed  CAS  Google Scholar 

  • Lo FS, Mize RR (2000) Synaptic regulation of L-type Ca2+ channel activity and long-term depression during refinement of the retinocollicular pathway in developing rodent superior colliculus. J Neurosci 20:RC58

    PubMed  CAS  Google Scholar 

  • Logan SM, Partridge JG, Matta JA, Buonanno A, Vicini S (2007) Long-lasting NMDA receptor-mediated EPSCs in mouse striatal medium spiny neurons. J Neurophysiol 98:2693–2704. doi:10.1152/jn.00462.2007

    Article  PubMed  CAS  Google Scholar 

  • Mahon S, Deniau JM, Charpier S (2001) Relationship between EEG potentials and intracellular activity of striatal and cortico-striatal neurons: an in vivo study under different anesthetics. Cereb Cortex 11:360–373. doi:10.1093/cercor/11.4.360

    Article  PubMed  CAS  Google Scholar 

  • Mann EO, Paulsen O (2007) Role of GABAergic inhibition in hippocampal network oscillations. Trends Neurosci 30:343–349. doi:10.1016/j.tins.2007.05.003

    Article  PubMed  CAS  Google Scholar 

  • Misgeld U, Wagner A, Ohno T (1982) Depolarizing IPSPs and depolarization by GABA of rat neostriatum cells in vitro. Exp Brain Res 45:108–114. doi:10.1007/BF00235769

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell P (2003) Dopamine gating of forebrain neural ensembles. Eur J NeuroSci 17:429–435. doi:10.1046/j.1460-9568.2003.02463.x

    Article  PubMed  Google Scholar 

  • O’Donnell P, Grace AA (1995) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci 15:3622–3639

    PubMed  Google Scholar 

  • O’Donnell P, Greene J, Pabello N, Lewis BL, Grace AA (1999) Modulation of cell firing in the nucleus accumbens. Ann N Y Acad Sci 877:157–175. doi:10.1111/j.1749-6632.1999.tb09267.x

    Article  PubMed  Google Scholar 

  • Olson PA, Tkatch T, Hernandez-Lopez S, Ulrich S, Ilijic E, Mugnaini E, Zhang H, Bezprozvanny I, Surmeier DJ (2005) G-protein-coupled receptor modulation of striatal CaV1.3 L-type Ca2+ channels is dependent on a Shank-binding domain. J Neurosci 25:1050–1062. doi:10.1523/JNEUROSCI.3327-04.2005

    Article  PubMed  CAS  Google Scholar 

  • Ondracek JM, Dec A, Hoque KE, Lim SA, Rasouli G, Indorkar RP, Linardakis J, Klika B, Mukherji SJ, Burnazi M, Threlfell S, Sammut S, West AR (2008) Feed-forward excitation of striatal neuron activity by frontal cortical activation of nitric oxide signaling in vivo. Eur J NeuroSci 27:1739–1754. doi:10.1111/j.1460-9568.2008.06157.x

    Article  PubMed  Google Scholar 

  • Plenz D (2003) When inhibition goes incognito: feedback interaction between spiny projection neurons in striatal function. Trends Neurosci 26:436–443. doi:10.1016/S0166-2236(03)00196-6

    Article  PubMed  CAS  Google Scholar 

  • Pomata PE, Belluscio MA, Riquelme LA, Murer MG (2008) NMDA receptor gating of information flow through the striatum in vivo. J Neurosci 28:13384–13389. doi:10.1523/JNEUROSCI.4343-08.2008

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan S, Hanley JJ, Deniau JM, Bolam JP (2002) Synaptic convergence of motor and somatosensory cortical afferents onto GABAergic interneurons in the rat striatum. J Neurosci 22:8158–8169

    PubMed  CAS  Google Scholar 

  • Schiller J, Schiller Y (2001) NMDA receptor-mediated dendritic spikes and coincident signal amplification. Curr Opin Neurobiol 11:343–348. doi:10.1016/S0959-4388(00)00217-8

    Article  PubMed  CAS  Google Scholar 

  • Schlösser B, Bruggencate G, Sutor B (1999) Local disinhibition of neocortical neuronal circuits causes augmentation of glutamatergic and GABAergic synaptic transmission in the rat neostriatum in vitro. Exp Neurol 157:180–193. doi:10.1006/exnr.1999.7039

    Article  PubMed  Google Scholar 

  • Stratford K, Mason A, Larkman A, Major G, Jack JJB (1989) The modeling of pyramidal neurons in the visual cortex. In: Dubin R, Miall C, Mitchison G (eds) The computing neuron. Addison-Wesley, Workingham, pp 296–321

    Google Scholar 

  • Sullivan MA, Chen H, Morikawa H (2008) Recurrent inhibitory network among striatal cholinergic interneurons. J Neurosci 28:8682–8690. doi:10.1523/JNEUROSCI.2411-08.2008

    Article  PubMed  CAS  Google Scholar 

  • Suri RE, Bargas J, Arbib MA (2001) Modeling functions of striatal dopamine modulation in learning and planning. Neurosci 103:65–85. doi:10.1016/S0306-4522(00)00554-6

    Article  CAS  Google Scholar 

  • Tecuapetla F, Carrillo-Reid L, Guzman JN, Galarraga E, Bargas J (2005) Different inhibitory inputs onto neostriatal projection neurons as revealed by field stimulation. J Neurophysiol 93:1119–1126. doi:10.1152/jn.00657.2004

    Article  PubMed  Google Scholar 

  • Tecuapetla F, Carrillo-Reid L, Bargas J, Galarraga E (2007) Dopaminergic modulation of short term synapitc plasticity at striatal inhibitory synapses. Proc Natl Acad Sci USA 104:10258–10263. doi:10.1073/pnas.0703813104

    Article  PubMed  CAS  Google Scholar 

  • Tseng KY, O’Donnell P (2005) Post-pubertal emergence of prefrontal cortical up states induced by D1-NMDA co-activation. Cereb Cortex 15:49–57. doi:10.1093/cercor/bhh107

    Article  PubMed  Google Scholar 

  • Tseng KY, Kasanetz F, Kargieman L, Riquelme LA, Murer MG (2001) Cortical slow oscillatory activity is reflected in the membrane potential and spike trains of striatal neurons in rats with chronic nigrostriatal lesions. J Neurosci 21:6430–6439

    PubMed  CAS  Google Scholar 

  • Tseng KY, Snyder-Keller A, O’Donnell P (2007) Dopaminergic modulation of striatal plateau depolarizations in corticostriatal organotypic cocultures. Psychopharmacol 191:627–640. doi:10.1007/s00213-006-0439-7

    Article  CAS  Google Scholar 

  • Tunstall MJ, Oorschot DE, Kean A, Wickens JR (2002) Inhibitory interactions between spiny projection neurons in the rat striatum. J Neurophysiol 88:1263–1269

    PubMed  Google Scholar 

  • Vautrelle N, Carrillo-Reid L, Bargas J (2009) Diversity of up-state voltage transitions during different network states. In: Tseng KY (ed) Cortico-subcortical dynamics in Parkinson disease, Chapter 5. Humana/Springer, New York, pp 73–85

    Google Scholar 

  • Vergara R, Rick C, Hernandez-Lopez S, Laville JA, Guzman JN, Galarraga E, Surmeier DJ, Bargas J (2003) Spontaneous voltage oscillations in striatal projection neurons in a rat corticostriatal slice. J Physiol 553:169–182. doi:10.1113/jphysiol.2003.050799

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Kawaguchi Y (1996) The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci 16:2397–2410

    PubMed  CAS  Google Scholar 

  • Wilson CJ, Groves PM, Kitai ST, Linder JC (1983) Three-dimensional structure of dendritic spines in the rat neostriatum. J Neurosci 3:383–388

    PubMed  CAS  Google Scholar 

  • Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M, O’Donnell P, Finkel LH (2005) NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J Neurosci 25:9080–9095. doi:10.1523/JNEUROSCI.2220-05.2005

    Article  PubMed  CAS  Google Scholar 

  • Wu SH, Ma CL, Kelly JB (2004) Contribution of AMPA, NMDA, and GABAA receptors to temporal pattern of postsynaptic responses in the inferior colliculus of the rat. J Neurosci 24:4625–4634. doi:10.1523/JNEUROSCI.0318-04.2004

    Article  PubMed  CAS  Google Scholar 

  • Yuste R, MacLean JN, Smith J, Lansner A (2005) The cortex as a central pattern generator. Natl Rev 6:477–483. doi:10.1038/nrn1686

    Article  CAS  Google Scholar 

  • Zhou Z, Xiong W, Masurkar AV, Chen WR, Shepherd GM (2006) Dendritic calcium plateau potentials modulate input–output properties of juxtaglomerular cells in the rat olfactory bulb. J Neurophysiol 96:2354–2363. doi:10.1152/jn.00003.2006

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from a Project Program grant IMPULSA 03 to J. Bargas, and E. Galarraga, by Consejo Nacional de Ciencia y Tecnología (México) Grant 49484 and by grants from Dirección General de Asuntos del Personal Académico. Universidad Nacional Autónoma de México: IN201607 to J. Bargas and IN201507 to E. Galarraga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Galarraga.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores-Barrera, E., Laville, A., Plata, V. et al. Inhibitory Contribution to Suprathreshold Corticostriatal Responses: An Experimental and Modeling Study. Cell Mol Neurobiol 29, 719–731 (2009). https://doi.org/10.1007/s10571-009-9394-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9394-2

Keywords

Navigation