Skip to main content
Log in

Glycine Provokes Lipid Oxidative Damage and Reduces the Antioxidant Defenses in Brain Cortex of Young Rats

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Patients affected by nonketotic hyperglycinemia (NKH) usually present severe neurological symptoms and suffer from acute episodes of intractable seizures with leukoencephalopathy. Although excitotoxicity seems to be involved in the brain damage of NKH, the mechanisms underlying the neuropathology of this disease are not fully established. The objective of the present study was to investigate the in vitro effects of glycine (GLY), that accumulate at high concentrations in the brain of patients affected by this disorder, on important parameters of oxidative stress, such as lipid peroxidation (thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence) and the most important non-enzymatic antioxidant defense reduced glutathione (GSH) in cerebral cortex from 30-day-old rats. GLY significantly increased TBA-RS and chemiluminescence values, indicating that this metabolite provokes lipid oxidative damage. Furthermore, the addition of high doses of the antioxidants melatonin, trolox (soluble vitamin E) and GSH fully prevented GLY-induced increase of lipid peroxidation, indicating that free radicals were involved in this effect. GLY also decreased GSH brain concentrations, which was totally blocked by melatonin treatment. Finally, GLY significantly reduced sulfhydryl group content from a commercial GSH solution, but did not oxidize reduced cytochrome C. Our data indicate that oxidative stress elicited in vitro by GLY may possibly contribute at least in part to the pathophysiology of the neurological dysfunction in NKH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Applegarth DA, Toone JR (2001) Nonketotic hyperglycinemia (glycine encefalophalopathy): laboratory diagnosis. Mol Genet Metab 74:139–146. doi:10.1006/mgme.2001.3224

    Article  PubMed  CAS  Google Scholar 

  • Behl C, Moosmann B (2002) Oxidative nerve cell death in Alzheimer’s disease and stroke: antioxidants as neuroprotective compounds. Biol Chem 383:521–536. doi:10.1515/BC.2002.053

    Article  PubMed  CAS  Google Scholar 

  • Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17:5–17. doi:10.1097/01.rmr.0000245461.90406.ad

    Article  PubMed  Google Scholar 

  • Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF (2001) Increased oxidative damage to DNA in a transgenic mouse of Huntington’s disease. J Neurochem 79:1246–1249. doi:10.1046/j.1471-4159.2001.00689.x

    Article  PubMed  CAS  Google Scholar 

  • Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

    PubMed  CAS  Google Scholar 

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421. doi:10.1016/0076-6879(90)86134-H

    Article  PubMed  CAS  Google Scholar 

  • Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi E (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266. doi:10.1006/abbi.2001.2292

    Article  PubMed  CAS  Google Scholar 

  • Frazier DM, Summer GK, Chamberlin HR (1978) Hyperglycinuria and hyperglycinemia in two siblings with mild developmental delays. Am J Dis Child 132:777–781

    PubMed  CAS  Google Scholar 

  • Gonzalez-Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med 10:93–100. doi:10.1016/0891-5849(91)90002-K

    Article  PubMed  CAS  Google Scholar 

  • Hall DA, Ringel SP (2004) Adult nonketotic hyperglycynemia crisis presenting as severe chorea and encephalopathy. Mov Disord 19:485–486. doi:10.1002/mds.10681

    Article  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1996) Oxygen radicals and nervous system. Trends Neurosci 8:22–26. doi:10.1016/0166-2236(85)90010-4

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 268–340

    Google Scholar 

  • Hamosh A, Johnston MV (2001) Nonketotic hyperglycinemia. In: Scriver C, Beaudet A, Valle D et al (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 2065–2078

    Google Scholar 

  • Hara H, Sukamoto T, Kogure K (1993) Mechanism and pathogenesis of ischemia induced neuronal damage. Prog Neurobiol 40:645–670. doi:10.1016/0301-0082(93)90009-H

    Article  PubMed  CAS  Google Scholar 

  • Karelson E, Bogdanovic N, Garlind A, Winblad B, Zilmer K, Kullisaar T et al (2001) The cerebrocortical areas in normal brain aging and in the Alzheimer’s disease: noticeable difference in the lipid peroxidation level and in antioxidant defense. Neurochem Res 26:353–361. doi:10.1023/A:1010942929678

    Article  PubMed  CAS  Google Scholar 

  • Katsuki H, Watanabe Y, Fujimoto S, Kume T, Akaike A (2007) Contribution of endogenous glycine and D-serine to excitotoxic and ischemic cell death in rat cerebrocortical slice cultures. Life Sci 81:740–749. doi:10.1016/j.lfs.2007.07.001

    Article  PubMed  CAS  Google Scholar 

  • Kono Y, Shigetomi E, Inoue K, Kato F (2007) Facilitation of spontaneous glycine release by anoxia potentiates NMDA receptor current in the hypoglossal motor neurons of the rat. Eur J NeuroSci 25(6):1748–1756. doi:10.1111/j.1460-9568.2007.05426.x

    Article  PubMed  Google Scholar 

  • Korman SH, Wexler ID, Gutman A, Rolland MO, Kanno J, Kure S (2006) Treatment from birth of nonketotic hyperglycinemia due to a novel GLDC mutation. Ann Neurol 59(2):411–415. doi:10.1002/ana.20759

    Article  PubMed  CAS  Google Scholar 

  • Kure S, Tada K, Narisawa K (1997) Nonketotic hyperglycinemia: biochemical, molecular and neurological aspects. Jpn J Hum Genet 42:13–22. doi:10.1007/BF02766917

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Lewis-Farr A, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mancuso M, Coppede F, Migliore L, Siciliano G, Murri L (2006) Mitochondrial dysfunction, oxidative stress and neurodegeneration. J Alzheimers Dis 10:59–73

    PubMed  CAS  Google Scholar 

  • McNamara D, Dingledine R (1990) Dual effect of glycine on NMDA-induced neurotoxicity in rat cortical cultures. J Neurosci Res 10(12):3970–3976

    CAS  Google Scholar 

  • Méndez-Álvarez E, Soto-Otero R, Hermida-Aeijeiras A, López-Real AM, Labandeira-García JL (2001) Effects of aluminium and zinc on the oxidative stress caused by 6-hydroxydopamine autoxidation: relevance for the pathogenesis of Parkinson’s disease. Biochim Biophys Acta 1586:155–168

    Google Scholar 

  • Oda M, Kure S, Sugawara T, Yamaguchi S, Kojima K, Shinka T et al (2007) Direct correlation between ischemic injury and extracellular glycine concentration in mice with genetically altered activities of the glycine cleavage multienzyme system. Stroke 38(7):2157–2164. doi:10.1161/STROKEAHA.106.477026

    Article  PubMed  CAS  Google Scholar 

  • Patel J, Zinkand WC, Thompson C, Keith R, Salama A (1990) Role of glycine in the N-methyl-D-aspartate-mediated neuronal cytotoxicity. J Neurochem 54(3):849–854. doi:10.1111/j.1471-4159.1990.tb02329.x

    Article  PubMed  CAS  Google Scholar 

  • Perez-Severiano F, Rios C, Segovia J (2000) Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of Huntington’s disease. Brain Res 862:234–237. doi:10.1016/S0006-8993(00)02082-5

    Article  PubMed  CAS  Google Scholar 

  • Press GA, Barshop BA, Haas RH, Nyhan WL, Glass RF, Hesselink JR (1989) Abnormalities of the brain in nonketotic hyperglycinemia: MR manifestations. AJNR Am J Neuroradiol 10:315–321

    PubMed  CAS  Google Scholar 

  • Reznick AZ, Packer L (1993) Free radicals and antioxidants in muscular neurological diseases and disorders. In: Poli G, Albano E, Dianzani UM (eds) Free radicals: from basic science to medicine. Birkhauser Verlag, Basel, pp 425–437

    Google Scholar 

  • Shuman RM, Leech RW, Scout CR (1978) The neuropathology of the nonketotic and ketotic hyperglycinemias: tree cases. Neurology 28:139–146

    PubMed  CAS  Google Scholar 

  • Spittler A, Reissner CM, Oehler R, Gornikiewicz A, Gruenberger T, Manhart N et al (1999) Immunomodulatory effects of glycine on LPS-treated monocytes: reduced TNF-alpha production and accelerated IL-10 expression. FASEB J 13(3):563–571

    PubMed  CAS  Google Scholar 

  • Stoy N, Mackay GM, Forrest CM, Christofides J, Egerton M, Stone TW et al (2005) Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J Neurochem 93:611–623. doi:10.1111/j.1471-4159.2005.03070.x

    Article  PubMed  CAS  Google Scholar 

  • Tekinalp G, Caskun T, Oran O, Ozalp I, Fiquen G, Erquin H (1995) Nonketotic hyperglycinemia in a newborn infant. Turk J Pediatr 37:57–60

    PubMed  CAS  Google Scholar 

  • Zhong Z, Jones S, Thurman RG (1996) Glycine minimizes reperfusion injury in a low-flow, reflow liver perfusion model in the rat. Am J Physiol 270:G332–G338

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from CNPq, PRONEX II, FAPERGS, PROPESQ/UFRGS, and FINEP research grant Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leipnitz, G., Solano, A.F., Seminotti, B. et al. Glycine Provokes Lipid Oxidative Damage and Reduces the Antioxidant Defenses in Brain Cortex of Young Rats. Cell Mol Neurobiol 29, 253–261 (2009). https://doi.org/10.1007/s10571-008-9318-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-008-9318-6

Keywords

Navigation