Skip to main content

Advertisement

Log in

Differential Effects of Methionine and Cysteine Oxidation on [Ca2+]i in Cultured Hippocampal Neurons

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Methionine and cysteine residues in proteins are the major targets of reactive oxygen species (ROS). The present work was designed to characterize the impact of methionine and cysteine oxidation upon [Ca2+]i in hippocampal neurons. We investigated the effects of H2O2 and chloramine T(Ch-T) agents known to oxidize both cysteine and methionine residues, and 5, 5′-dithio-bis (2-nitrobenzoic acid) (DTNB)—a cysteine-specific oxidant, on the intracellular calcium in hippocampal neurons. The results showed that these three oxidants, 1 mM H2O2, 1 mM Ch-T, and 500 μM DTNB, induced an sustained elevation of [Ca2+]i by 76.1 ± 3.9%, 86.5 ± 5.0%, and 24.4 ± 3.2% over the basal level, respectively. The elevation induced by H2O2 and Ch-T was significantly higher than DTNB. Pretreatment with reductant DTT at 1 mM for 10 min completely prevented the action of DTNB on [Ca2+]i, but only partially reduced the effects of H2O2 and Ch-T on [Ca2+]i, the reductions were 44.6 ± 4.2% and 29.6 ± 6.1% over baseline, respectively. The elevation of [Ca2+]i induced by H2O2 and Ch-T after pretreatment with DTT were statistically higher than that induced by single administration of DTNB. Further investigation showed that the elevation of [Ca2+]i mainly resulted from internal calcium stores. From our data, we propose that methionine oxidation plays an important role in the regulation of intracellular calcium and this regulation may mainly be due to internal calcium stores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    Article  PubMed  CAS  Google Scholar 

  • Bigelow DJ, Squier TC (2005) Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins. Biochim Biophys Acta 1703:121–134

    PubMed  CAS  Google Scholar 

  • Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, De Smet P, Travers M, Tovey SC, Seo JT, Berridge MJ, Ciccolini F, Lipp P (2001) Calcium signaling—an overview. Semin Cell Dev Biol 12:3–10

    Article  PubMed  CAS  Google Scholar 

  • Cabreiro F, Picot CR, Friguet B, Petropoulos I (2006) Methionine sulfoxide reductases: relevance to aging and protection against oxidative stress. Ann N Y Acad Sci 1067:37–44

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Avdonin V, Ciorba MA, Heinemann SH, Hoshi T (2000) Acceleration of P/Q-type inactivation in voltage-gated K+ channels by methionine oxidation. Biophys J 78:174–187

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Daggett H, Heinemann SH, Hoshi T (2002) Nitric oxide augments voltage-gated P/Q- type Ca2+ channels constituting a putative positive feedback loop. Free Radic Biol Med 32:638–649

    Article  PubMed  CAS  Google Scholar 

  • Clementi ME, Misiti F (2005) Substitution of methionine 35 inhibits apoptotic effects of Abeta (31–35) and Abeta (25–35) fragments of amyloid-beta protein in PC12 cells. Med Sci Monit 11:BR381–BR385

    PubMed  CAS  Google Scholar 

  • Clementi ME, Pezzotti M, Orsini F, Sampaolese B, Mezzogori D, Grassi C, Giardina B, Misiti F (2006) Alzheimer’s amyloid beta-peptide (1–42) induces cell death in human neuroblastoma via bax/bcl-2 ratio increase: an intriguing role for methionine 35. Biochem Biophys Res Commun 342:206–213

    Article  PubMed  CAS  Google Scholar 

  • Collins TJ, Lipp P, Berridge MJ, Li W, Bootman MD (2000) Inositol 1, 4, 5-trisphosphate-induced Ca2+ release is inhibited by mitochondrial depolarization. Biochem J 347:593–600

    Article  PubMed  CAS  Google Scholar 

  • Crouch PJ, Barnham KJ, Duce JA, Blake RE, Masters CL, Trounce IA (2006) Copper-dependent inhibition of cytochrome oxidase by Abeta (1–42) requires reduced methionine at residue 35 of the Abeta peptide. J Neurochem 99:226–236

    Article  PubMed  CAS  Google Scholar 

  • Dai XL, Sun YX, Jiang AF (2007) Attenuated cytotoxicity but enhanced betafibril of a mutant amyloid beta-peptide with a methionine to cysteine substitution. FEBS Lett 581:1269–1274

    Article  PubMed  CAS  Google Scholar 

  • Davis DA, Newcomb FM, Moskovitz J, Fales HM, Levine RL, Yarchoan R (2002) Inactivation of HIV-2 protease through methionine oxidation and its restoration by methionine sulfoxide reductase. Methods Enzymol 348:249–259

    Article  PubMed  CAS  Google Scholar 

  • Fagni L, Chavis P, Ango F, Bockaert J (2000) Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci 23:80–88

    Article  PubMed  CAS  Google Scholar 

  • Feng YH, Hart G (1995) In vitro oxidative damage to tissue-type plasminogen activator: a selective modification of the biological functions. Cardiovasc Res 30:255–261

    PubMed  CAS  Google Scholar 

  • Finch E, Turner T, Goldin S (1991) Calcium as a coagonist of inositol 1, 4, 5-trisphosphate-induced calcium release. Science 252:443–446

    Article  PubMed  CAS  Google Scholar 

  • Finkel T (2000) Redox-dependent signal transduction. FEBS Lett 476:52–54

    Article  PubMed  CAS  Google Scholar 

  • Foster TC (1999) Involvement of hippocampal synaptic plasticity in age-related memory decline. Brain Res Rev 30:236–249

    Article  PubMed  CAS  Google Scholar 

  • Foster TC, Kumar A (2002) Calcium dysregulation in the aging brain. Neuroscientist 8:297–301

    Article  PubMed  CAS  Google Scholar 

  • Friel DD, Tsien RW (1992) A caffeine- and ryanodine-sensitive Ca2+ store in bullfrog sympathetic neurons modulates effects of Ca2+ entry on [Ca2+]i. J Physiol 450:217–246

    PubMed  CAS  Google Scholar 

  • González A, Granados MP, Pariente JA, Salido GM (2006) H2O2 mobilizes Ca2+ from agonist- and thapsigargin-sensitive and insensitive intracellular stores and stimulates glutamate secretion in rat hippocampal astrocytes. Neurochem Res 31:741–750

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  • Hong JH, Moon SJ, Byun HM, Kim MS, Jo H, Bae YS, Lee SI, Bootman MD, Roderick HL, Shin DM, Seo JT (2006) Critical role of PLCγ1 in the generation of H2O2- evoked [Ca2+]i oscillation in cultured rat cortical astrocytes. J Biol Chem 281:13057–13067

    Article  PubMed  CAS  Google Scholar 

  • Hoshi T, Heinemann SH (2001) Regulation of cell function by methionine oxidation and reduction. J Physiol 531:1–11

    Article  PubMed  CAS  Google Scholar 

  • Jönsson TJ, Ellis HR, Poole LB (2007) Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system. Biochemistry 46:5709–5721

    Article  PubMed  CAS  Google Scholar 

  • Keck RG (1996) The use of t-butyl hydroperoxide as a probe for methionine oxidation in proteins. Anal Biochem 236:56–62

    Article  PubMed  CAS  Google Scholar 

  • Khachaturian ZS (1994) Calcium hypothesis of Alzheimer’s disease and brain aging. Ann N Y Acad Sci 15:1–11

    Google Scholar 

  • Koc A, Gladyshev VN (2007) Methionine sulfoxide reduction and the aging process. Ann N Y Acad Sci 1100:383–386

    Article  PubMed  CAS  Google Scholar 

  • Lushington GH, Zaidi A, Michaelis ML (2005) Theoretically predicted structures of plasma membrane Ca2+-ATPase and their susceptibilities to oxidation. J Mol Graph Model 24:175–185

    Article  PubMed  CAS  Google Scholar 

  • Ly CV, Verstreken P (2006) Mitochondria at the synapse. Neuroscientist 12:291–299

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Chan SL (2003) Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 34:385–397

    Article  PubMed  CAS  Google Scholar 

  • Ming YL, Zhang H, Long LH, Wang F, Chen JG, Zhen XC (2006) Modulation of Ca2+ signals by phosphatidylinositol-linked novel D1 dopamine receptor in hippocampal neurons. J Neurochem 98:1316–1323

    Article  PubMed  CAS  Google Scholar 

  • Moskovitz J, Weissbach H, Brot N (1996) Cloning and expression of a mammalian gene involved in the reduction of methionine sulfoxide residues in proteins. Proc Natl Acad Sci USA 93:2095–2099

    Article  PubMed  CAS  Google Scholar 

  • Pariente JA, Camello C, Camello PJ, Salido GM (2001) Release of calcium from mitochondrial and nonmitochondrial intracellular stores in mouse pancreatic acinar cells by hydrogen peroxide. J Membr Biol 179:27–35

    Article  PubMed  CAS  Google Scholar 

  • Petropoulos I, Friguet B (2006) Maintenance of proteins and aging: the role of oxidized protein repair. Free Radic Res 40:1269–1276

    Article  PubMed  CAS  Google Scholar 

  • Prasad M, Goyal RK (2004) Currents in colonic smooth muscle by oxidants. Am J Physiol Cell Physiol 286:671–682

    Article  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  • Rizzuto R (2001) Intracellular Ca2+ pools in neuronal signaling. Curr Opin Neurobiol 11:306–311

    Article  PubMed  CAS  Google Scholar 

  • Robison AJ, Winder DG, Colbran RJ, Bartlett RK (2007) Oxidation of calmodulin alters activation and regulation of CaMKII. Biochem Biophys Res Commun 356:97–101

    Article  PubMed  CAS  Google Scholar 

  • Rosado JA, Sage SO (2000) Regulation of plasma membrane Ca2+-ATPase by small GTPases and phosphoinositides in human platelets. J Biol Chem 275:19529–19535

    Article  PubMed  CAS  Google Scholar 

  • Slaughter BD, Urbauer RJ, Urbauer JL, Johnson CK (2007) Mechanism of calmodulin recognition of the binding domain of isoform 1b of the plasma membrane Ca2+-ATPase: kinetic pathway and effects of methionine oxidation. Biochemistry 46:4045–4054

    Article  PubMed  CAS  Google Scholar 

  • Squier TC, Bigelow DJ (2000) Protein oxidation and age-dependent alterations in calcium homeostasis. Front Biosci 5:D504–D526

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62:797–821

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (2004) Role of oxidant species in aging. Curr Med Chem 11:1105–1112

    PubMed  CAS  Google Scholar 

  • Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40:1250–1258

    Article  PubMed  CAS  Google Scholar 

  • Taggart C, Cervantes-Laurean D, Kim G, McElvaney NG, Wehr N, Moss J, Levine RL (2000) Oxidation of either methionine 351 or methionine 358 in alpha 1-antitrypsin causes loss of anti-neutrophil elastase activity. J Biol Chem 275:27258–27265

    PubMed  CAS  Google Scholar 

  • Toescu EC, Verkhratsky A (2003) Neuronal ageing from an intraneuronal perspective: roles of endoplasmic reticulum and mitochondria. Cell Calcium 34:311–323

    Article  PubMed  CAS  Google Scholar 

  • Toescu EC, Verkhratsky A (2004) Ca2+ and mitochondria as substrates for deficits in synaptic plasticity in normal brain aging. J Cell Mol Med 8:181–190

    Article  PubMed  CAS  Google Scholar 

  • Viner RI, Ferrington DA, Aced GI, Miller-Schlyer M, Bigelow DJ, Schöneich Ch (1997) In vivo aging of rat fast twitch skeletal muscle sarcoplasmic reticulum Ca-ATPase Chemical analysis and quantitative simulation by exposure to low levels of peroxyl radicals. Biochim Biophys Acta 1329:321–335

    Article  PubMed  CAS  Google Scholar 

  • Whalley LJ, Deary IJ, Appleton CL, Starr JM (2004) Cognitive reserve and the neurobiology of cognitive aging. Ageing Res Rev 3:369–382

    Article  PubMed  Google Scholar 

  • Yao Y, Yin D, Jas GS, Kuczer K, Williams TD, Schoneich C, Squier TC (1996) Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase. Biochemistry 35:2767–2787

    Article  PubMed  CAS  Google Scholar 

  • Yermolaieva O, Chen J, Couceyro PR, Hoshi T (2001) Cocaine-and amphetamine-regulated transcript peptide modulation of voltage-gated Ca2+ signaling in hippocampal neurons. J Neurosci 21:7474–7480

    PubMed  CAS  Google Scholar 

  • Zaidi A, Barron L, Sharov VC, Schoneich C, Mochaelis EK, Michaelis ML (2003) Oxidative inactivation of purified plasma membrane Ca2+-ATPase by hydrogen peroxide and protection by calmodulin. Biochemistry 42:12001–12010

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the National Science Fund for Distinguished Young Scholars of China (No. 30425024) and the National Basic Research Program of China (973 Program) (No. 2007CB507404) to Dr. Jian-Guo Chen, and Joint Research Fund for Overseas Chinese Young Scholars to Dr. Yong Xia and Dr. Jian-Guo Chen (No. 30728010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, LH., Liu, J., Liu, RL. et al. Differential Effects of Methionine and Cysteine Oxidation on [Ca2+]i in Cultured Hippocampal Neurons. Cell Mol Neurobiol 29, 7–15 (2009). https://doi.org/10.1007/s10571-008-9289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-008-9289-7

Keywords

Navigation