Skip to main content
Log in

Collapse of Neuronal Energy Balance As a Basis of L-Homocysteine Neurotoxicity

  • ARTICLES
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Using fluorescence detection methods, neurotoxic effects of L-homocysteine (HCY), L-glutamate (Glu), and N-methyl-D-aspartate (NMDA) on primary culture of rat cerebellar neurons were compared and the agonist-evoked intracellular Ca2+ responses and changes in mitochondrial membrane potential were studied. Long-term (5 h) action of HCY, Glu, or NMDA caused neuronal apoptosis and necrosis that was followed by a decrease of quantity of live cells to 40%. It was revealed using Fluo-3 that neurons differed by intracellular Ca2+ responses to 2-min applications of HCY. In response to all studied agonists, a brief peak or gradual increase of intracellular Ca2+ concentration was observed. Some neurons did not respond to HCY, but all responded to Glu and NMDA. A prolonged (60 min) treatment with agonists caused a rapid or delayed Ca2+ overload, while only a small portion of neurons were able to compensate the intracellular Ca2+ elevation. Six-minute applications of HCY or Glu to neurons induced similar changes of mitochondrial potential (φmit) measured by rhodamine123. In this protocol, the ability of the NMDA receptor agonists to cause the mitochondrial dysfunction could be arranged in the following order: NMDA > Glu = HCY. After a 60-min treatment the observed difference vanished because all of the agonists reduced φmit so that an uncoupling agent FCCP did not cause any additional changes in φmit. Thus, HCY-induced neurotoxicity in cerebellar neurons is comparable to that of Glu. In this feature cerebellar neurons differ from cortical neurons, in which HCY did not significantly change φmit during short-term application. This difference could be related with peculiarities of the HCY action on NMDA receptor subtypes expressed by cerebellar neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Shi Q., Savage J.E., Hufeisen S.J., Rauser L., Grajkowska E., Ernsberger P., Wroblewski J.T., Nadeau J.H., Roth B.L. 2003. L-homocysteine sulfinic acid and other acidic homocysteine derivatives are potent and selective metabotropic glutamate receptor agonists. J. Pharmacol. Exp. Ther. 305 (1), 131–142.

    Article  CAS  PubMed  Google Scholar 

  2. Rozen R. 1997. Genetic predisposition to hyperhomocysteinemia: Deficiency of methylenetetrahydrofolate reductase (MTHFR). Thromb. Haemost. 78 (1), 523–526.

    Article  CAS  PubMed  Google Scholar 

  3. Sachdev P.S. 2005. Homocysteine and brain atrophy. Prog. Neuropsychopharmacol. Biol. Psychiatry. 29 (7), 1152–1161.

    Article  CAS  PubMed  Google Scholar 

  4. Isobe C., Terayama Y. 2010. A remarkable increase in total homocysteine concentrations in the CSF of migraine patients with aura. Headache. 50 (10), 1561–1569.

    Article  PubMed  Google Scholar 

  5. Sachdev P. 2004. Homocysteine, cerebrovascular disease and brain atrophy. J. Neurol. Sci. 226 (1–2), 25–29.

    Article  CAS  PubMed  Google Scholar 

  6. Zoccolella S., Bendotti C., Beghi E., Logroscino G. 2010. Homocysteine levels and amyotrophic lateral sclerosis: A possible link. Amyotrophic Lateral Sclerosis. 11 (1–2), 140–147.

    Article  CAS  PubMed  Google Scholar 

  7. Khodorov B. 2004. Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Prog. Biophys. Mol. Biol. 86 (2), 279–351.

    Article  CAS  Google Scholar 

  8. Beard R.S. Jr., Reynolds J.J., Bearden S.E. 2011. Hyperhomocysteinemia increases permeability of the blood-brain barrier by NMDA receptor-dependent regulation of adherens and tight junctions. Blood. 118 (7), 2007–2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Poddar R., Paul S. 2009. Homocysteine-NMDA receptor-mediated activation of extracellular signal-regulated kinase leads to neuronal cell death. J. Neurochem. 124 (4), 558–570.

    Article  CAS  Google Scholar 

  10. Yeganeh F., Nikbakht F., Bahmanpour S., Rastegar K., Namavar R. 2013. Neuroprotective effects of NMDA and group I metabotropic glutamate receptor antagonists against neurodegeneration induced by homocysteine in rat hippocampus: In vivo study. J. Mol. Neurosci. 50 (3), 551–557.

    Article  CAS  PubMed  Google Scholar 

  11. Abushik P.A., Niittykoski M., Giniatullina R., Shakirzyanova A., Bart G., Fayuk D., Sibarov D.A., Antonov S.M., Giniatullin R. 2014. The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. J. Neurochem. 129 (2), 264–274.

    Article  CAS  PubMed  Google Scholar 

  12. Zhong J., Russell S.L., Pritchett D.B., Molinoff P.B., Williams K. 1994. Expression of mRNAs encoding subunits of the N-methyl-D-aspartate receptor in cultured cortical neurons. Mol. Pharmacol. 45 (5), 846–853.

    CAS  PubMed  Google Scholar 

  13. Abushik P.A., Sibarov D.A., Eaton M.J., Skatchkov S.N., Antonov S.M. 2013. Kainate-induced calcium overload of cortical neurons in vitro: Dependence on expression of AMPAR GluA2-subunit and down-regulation by subnanomolar ouabain. Cell Calcium. 54 (2), 95–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paoletti P., Bellone C., Zhou Q. 2013. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14 (6), 383–400.

    Article  CAS  PubMed  Google Scholar 

  15. Akazawa C., Shigemoto R., Bessho Y., Nakanishi S., Mizuno N. 1994. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J. Comp. Neurol. 347 (1), 150–160.

    Article  CAS  PubMed  Google Scholar 

  16. Sibarov D.A., Abushik P.A., Giniatullin R., Antonov S.M. 2016. GluN2A subunit-containing NMDA receptors are the preferential neuronal targets of homocysteine. Front. Cell. Neurosci. 10 (246), doi 10.3389/fncel.2016.00246

  17. Jadavji N.M., Wieske F., Dirnagl U., Winter C. 2015. Methylenetetrahydrofolate reductase deficiency alters levels of glutamate and γ-aminobutyric acid in brain tissue. Mol. Genet. Metab. Rep. 3, 1–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hockberger P.E., Tseng H.Y., Connor J.A. 1989. Development of rat cerebellar Purkinje cells: Electrophysiological properties following acute isolation and in long-term culture. J. Neurosci. 9 (7), 2258–2271.

    Article  CAS  PubMed  Google Scholar 

  19. Weber A., Schachner M. 1984. Maintenance of immunocytologically identified Purkinje cells from mouse cerebellum in monolayer culture. Brain Res. 311 (1), 119–130.

    Article  CAS  PubMed  Google Scholar 

  20. Karelina T.V., Stepanenko Yu.D., Abushik P.A., Sibarov D.A., Antonov S.M. 2016. Downregulation of Purkinje cell activity by modulators of small conductance calcium-activated potassium channels in rat cerebellum. Acta Naturae. 8 (3), 91–99.

    Article  CAS  Google Scholar 

  21. Antonov S.M., Johnson J.W. 1999. Permeant ion regulation of N-methyl-D-aspartate receptor channel block by Mg2+. Proc. Nat. Acad. Sci. USA. 96 (25), 14571–14576.

    Article  CAS  PubMed  Google Scholar 

  22. Mironova, E.V., Evstratova A.A., Antonov S.M. 2007. A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture. J. Neurosci. Methods. 163 (1), 1–8.

    Article  PubMed  Google Scholar 

  23. Sibarov D.A., Bolshakov A.E., Abushik P.A., Krivoi I.I., Antonov S.M. 2012. Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J. Pharmacol. Exp. Ther. 343 (3), 596–607.

    Article  CAS  PubMed  Google Scholar 

  24. Grynkiewicz G., Poenie M., Tsien R.Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260 (6), 3440–3450.

    CAS  PubMed  Google Scholar 

  25. Duchen M.R. 2012. Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflügers Archiv. 464 (1), 111–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mironova E.V., Lukina A.A., Brovtsyna N.B., Krivchenko A.I., Antonov S.M. 2006. Glutamate receptors types defining neurotoxic glutamate action on rat cortex neurons. Zh. Evol. Biokhim. Fiziol. (Rus.). 42 (6), 559–566.

    CAS  Google Scholar 

  27. Surin A.M., Krasilnikova I.A., Pinelis V.G., Khodorov B.I. 2014. Study of the relationship between glutamate-induced delayed calcium deregulation, mitochondrial depolarization and subsequent neuronal death. Pathogenesis. 12, 40–46.

    Google Scholar 

  28. Duchen M.R., Surin A.M. 2002. On the role of mitochondria and calcium in glutamate-induced neurotoxicity in hippocampal neurons in culture. Biol. Membrany (Rus.). 19, 97–109.

    Google Scholar 

  29. Prell T., Grosskreutz J. 2013. The involvement of the cerebellum in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 14 (7–8), 507–515.

    Article  CAS  PubMed  Google Scholar 

  30. Boldyrev A.A., Johnson P. 2007. Homocysteine and its derivatives as possible modulators of neuronal and non-neuronal cell glutamate receptors in Alzheimer’s disease. J. Alzheim. Disease. 11 (2), 219–228.

    Article  CAS  Google Scholar 

  31. Kuhn W., Hummel T., Woitalla D., Müller T. 2001. Plasma homocysteine and MTHFR C677T genotype in levodopa-treated patients with PD. Neurology. 56 (2), 281–282.

    Article  CAS  PubMed  Google Scholar 

  32. Valentino F., Bivona G., Butera D., Paladino P., Fazzari M., Piccoli T., Ciaccio M., La Bella V. 2010. Elevated cerebrospinal fluid and plasma homocysteine levels in ALS. Eur. J. Neurol. 17 (1), 84–89.

    Article  CAS  PubMed  Google Scholar 

  33. Abushik P.A., Karelina T.V., Sibarov D.A., Stepa-nenko Y.D., Giniatullin R.A., Antonov S.M. 2015. Homocysteine-induced membrane currents, calcium responses and changes in mitochondrial potential in rat cortical neurons. J. Evol. Biochem. Physiol. 51, 296–304.

    Article  CAS  Google Scholar 

  34. Scimemi A., Fine A., Kullmann D.M., Rusakov D.A. 2004. NR2B-containing receptors mediate cross talk among hippocampal synapses. J. Neurosci. 24, 4767–4777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hardingham G.E., Bading H. 2010. Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stark D.T., Bazan N.G. 2011. Synaptic and extrasynaptic NMDA receptors differentially modulate neuronal cyclooxygenase-2 function, lipid peroxidation, and neuroprotection. J. Neurosci. 31, 13710–13721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Misra C., Brickley S.G., Farrant M., Cull-Candy S.G. 2000. Identification of subunits contributing to synaptic and extrasynaptic NMDA receptors in Golgi cells of the rat cerebellum. J. Physiol. 524, 147–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brickley S.G., Misra C., Mok M.H.S., Mishina M., Cull-Candy S.G. 2003. Identification of subunits contributing to synaptic and extrasynaptic NMDA receptors in Golgi cells of the rat cerebellum. J. Neurosci. 23, 4958–4966.

    Article  CAS  PubMed  Google Scholar 

  39. Abushik P.A., Bart G., Korhonen P., Leinonen H., Giniatullina R., Sibarov D.A., Levonen A.L., Malm T., Antonov S.M., Giniatullin R. 2017. Pro-nociceptive migraine mediator CGRP provides neuroprotection of sensory, cortical and cerebellar neurons via multi-kinase signaling. Cephalalgia. 37 (4), 1373–1383.

    Article  PubMed  Google Scholar 

  40. Ziemińska E., Stafiej A., Łazarewicz J.W. 2003. Role of group I metabotropic glutamate receptors and NMDA receptors in homocysteine-evoked acute neurodegeneration of cultured cerebellar granule neurones. Neurochem. Int. 43, 481–492.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study of intracellular calcium responses and mitochondrial potential was supported by the Russian Science Foundation (project no. 16-15-10192). The study of neuronal survival was supported by the Russian Foundation for Basic Research (project no. 16-04-00653).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Antonov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. Experiments involving animals were performed in accordance to FELASA guidelines and were approved by local regulations of IEPHB RAS.

Additional information

Translated by D. Sibarov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitnikova, L.S., Ivanova, M.A., Stepanenko, Y.D. et al. Collapse of Neuronal Energy Balance As a Basis of L-Homocysteine Neurotoxicity. Biochem. Moscow Suppl. Ser. A 12, 360–368 (2018). https://doi.org/10.1134/S1990747818050069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747818050069

Keywords:

Navigation