Skip to main content
Log in

BDNF Level in the Rat Prefrontal Cortex Increases Following Chronic but Not Acute Treatment with Duloxetine, a Dual Acting Inhibitor of Noradrenaline and Serotonin Re-uptake

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aims

Brain-Derived Neurotrophic Factor (BDNF) has a central role in neuronal survival, differentiation, and plasticity. The brain level of BDNF is changed by several mood stabilizers and antidepressant drugs acting on neurotransmitters such as noradrenaline and serotonin. We investigated the effects of acute and chronic treatment with Duloxetine, a new drug blocking the re-uptake of serotonin and noradrenaline (SNRI), on BDNF level in the prefrontal cortex, cerebrospinal fluid, plasma, and serum.

Methods

Wistar male rats were treated with acute (single treatment) and chronic oral administration (14 days) of different concentrations of Duloxetine (10, 30, and 100 mg/kg/day). At the end of the treatment periods, samples of blood, CSF and the prefrontal cortex were collected. BDNF levels were measured by ELISA. Levels of mature and precursor form of BDNF were measured by Western blot analysis.

Results

Animals treated with the Duloxetine at all concentrations and examined after 1 and 24 h (single treatment) did not reveal a significant change in the total BDNF level. In animals treated for 14 days with Duloxetine at 30 and 100 mg/kg, the total BDNF level increased significantly in the prefrontal cortex and CSF, but not in the plasma and serum. Using a specific antibody and Western blot we showed that the mature, but not the precursor, form of BDNF was significantly increased in the prefrontal cortex of rats treated for 14 days with Duloxetine at 30 mg/kg/day.

Conclusions

Our results show a major finding that repeated, but not single, Duloxetine treatment increases the level of BDNF in the prefrontal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaneya Y, Tsumoto T, Kinoshita S, Hatanaka H (1997) Brain-derived neurotrophic factor enhances long-term potentiation in rat visual cortex. J Neurosci 7:6707–6716

    Google Scholar 

  • Alderson RF, Alterman AL, Barde YA, Lindsay RM (1990) Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron 5:297–306

    Article  PubMed  CAS  Google Scholar 

  • Altar CA (1999) Neurotrophins and depression. Trends Pharmacol Sci 20:59–61

    Article  PubMed  CAS  Google Scholar 

  • Altar CA, Boylan CB, Fritsche M, Jackson C, Hyman C, Lindsay RM (1994) The neurotrophins NT-4/5 and BDNF augment serotonin, dopamine, and GABAergic systems during behaviorally effective infusions to the substantia nigra. Exp Neurol 130:31–40

    Article  PubMed  CAS  Google Scholar 

  • Altar CA, Whitehead RE, Chen R, Wortwein G, Madsen TM (2003) Effects of electroconvulsive seizures and antidepressant drugs on brain-derived neurotrophic factor protein in rat brain. Biol Psychiatry 54:703–709

    Article  PubMed  CAS  Google Scholar 

  • Anderson IM (2000) Selective serotonin reuptake inhibitors versus tricyclic antidepressants: a meta-analysis of efficacy and tolerability. J Affect Disord 58:19–36

    Article  PubMed  CAS  Google Scholar 

  • Angelucci F, Aloe L, Vasquez PJ, Mathe AA (2000) Mapping the differences in the brain concentration of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in an animal model of depression. Neuroreport 11:1369–1373

    Article  PubMed  CAS  Google Scholar 

  • Angelucci F, Aloe L, Jimenez-Vasquez P, Mathe AA (2003) Lithium treatment alters brain concentrations of nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in a rat model of depression. Int J Neuropsychopharmacol 63:225–231

    Article  CAS  Google Scholar 

  • Aydemir O, Deveci A, Taneli F (2005) The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 29:261–265

    Article  PubMed  CAS  Google Scholar 

  • Bozzi Y, Pizzorusso T, Cremisi F, Rossi FM, Barsacchi G, Maffei L (1995) Monocular deprivation decreases the expression of messenger RNA for brain-derived neurotrophic factor in the rat visual cortex. Neuroscience 69:1133–1144

    Article  PubMed  CAS  Google Scholar 

  • Calabrese F, Molteni R, Maj PF, Cattaneo A, Pennarelli M, Racagni G, Riva MA (2007) Chronic duloxetine treatment induces specific changes in the expression of BDNF transcripts and in the subcellular localization of the neurotrophin protein. Neuropsychopharmacology 32:2351–2359

    Google Scholar 

  • Capsoni S, Tongiorgi E, Cattaneo A, Domenici L (1999) Dark rearing blocks the developmental down-regulation of brain-derived neurotrophic factor messenger RNA expression in layers IV and V of the rat visual cortex. Neuroscience 88:393–403

    Article  PubMed  CAS  Google Scholar 

  • Castren E (2004) Neurotrophins as mediators of drug effects on mood, addiction, and neuroprotection. Mol Neurobiol 29:289–302

    Article  PubMed  CAS  Google Scholar 

  • Castren E, Zafra F, Thoenen H, Lindholm D (1992) Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proc Natl Acad Sci USA 89:9444–9448

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50:260–265

    Article  PubMed  CAS  Google Scholar 

  • Coppell AL, Pei Q, Zetterstrom TS (2003) Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology 44:903–910

    Article  PubMed  CAS  Google Scholar 

  • De Foubert G, Carney SL, Robinson CS, Destexhe EJ, Tomlinson R, Hicks CA, Murray TK, Gaillard JP, Deville C, Xhenseval V, Thomas CE, O’Neill MJ, Zetterstrom TS (2004) Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience 128:597–604

    Article  PubMed  CAS  Google Scholar 

  • Dias BG, Banerjee SB, Duman RS, Vaidya VA (2003) Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain. Neuropharmacology 45:553–563

    Article  PubMed  CAS  Google Scholar 

  • Dowlatshahi D, MacQueen GM, Wang JF, Reiach JS, Young LT (1999) G Protein-coupled cyclic AMP signaling in postmortem brain of subjects with mood disorders: effects of diagnosis, suicide, and treatment at the time of death. J Neurochem 73:1121–1126

    Article  PubMed  CAS  Google Scholar 

  • Duman RS (2002) Structural alterations in depression: cellular mechanisms underlying pathology and treatment of mood disorders. CNS Spectr 7:140–142, 144–147

    PubMed  Google Scholar 

  • Duman RS, Malberg J, Thome J (1999) Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 46:1181–1191

    Article  PubMed  CAS  Google Scholar 

  • Duman RS, Malberg J, Nakagawa S, D’Sa CM (2000) Neuronal plastcity and survival in mood disorders. Biol Psychiatry 48:732–739

    Article  PubMed  CAS  Google Scholar 

  • Durany N, Michel T, Kurt J, Cruz-Sanchez FF, Cervas-Navarro J, Riederer P (2000) Brain-derived neurotrophic factor and neurotrophin-3 levels in Alzheimer’s disease brains. Int J Dev Neurosci 18:807–813

    Article  CAS  Google Scholar 

  • Eaton MJ, Whittemore SR (1996) Autocrine BDNF secretion enhances the survival and serotonergic differentiation of raphe neuronal precursor cells grafted into the adult rat CNS. Exp Neurol 140:105–114

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto T, Morinobu S, Okamoto Y, Kagaya A, Yamawaki S (2001) Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology (Berl) 158:100–106

    Article  CAS  Google Scholar 

  • Gervasoni N, Aubry JM, Bondolfi G, Osiek C, Schwald M, Bertschy G, Karege F (2005) Partial normalization of serum brain-derived neurotrophic factor in remitted patients after a major depressive episode. Neuropsychobiology 51:234–238

    Article  PubMed  CAS  Google Scholar 

  • Gonul AS, Akdeniz F, Taneli F, Donat O, Eker C, Vahip S (2005) Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci 255:381–386

    Article  PubMed  Google Scholar 

  • Hainer V, Kabrnova K, Aldhoon B, Kunesova M, Wagenknecht M (2006) Serotonin and norepinephrine reuptake inhibition and eating behavior. Ann N Y Acad Sci 1083:252–269

    Article  PubMed  CAS  Google Scholar 

  • Hastings RS, Parsey RV, Oquendo MA, Arango V, Mann JJ (2004) Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacology 29:952–959

    Article  PubMed  Google Scholar 

  • Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350:230–232

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Tokumura M, Abe K (2004) Effects of rolipram, a phosphodiesterase 4 inhibitor, in combination with imipramine on depressive behavior, CRE-binding activity and BDNF level in learned helplessness rats. Eur J Pharmacol 498:135–142

    Article  PubMed  CAS  Google Scholar 

  • Katoh-Semba R, Takeuchi IK, Semba R, Kato K (1997) Distribution of brain-derived neurotrophic factor in rats and its changes with development in the brain. J Neurochem 69:34–42

    Article  PubMed  CAS  Google Scholar 

  • Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109:143–148

    Article  PubMed  CAS  Google Scholar 

  • Karege F, Bondolfi G, Gervasoni N, Schwald M, Aubry JM, Bertschy G (2005) Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry 57:1068–1072

    Article  PubMed  CAS  Google Scholar 

  • Kernie SG, Liebl DJ, Parada LF (2000) BDNF regulates eating behavior and locomotor activity in mice. EMBO J 19:1290–1300

    Article  PubMed  CAS  Google Scholar 

  • Laifenfeld D, Karry R, Grauer E, Klein E, Ben-Shachar D (2005) Antidepressants and prolonged stress in rats modulate CAM-L1, laminin, and pCREB, implicated in neuronal plasticity. Neurobiol Dis 20:432–441

    Article  PubMed  CAS  Google Scholar 

  • Lee BH, Kim H, Park SH, Kim YK (2007) Decreased plasma BDNF level in depressive patients. J Affect Disord 101:239–244

    Article  PubMed  CAS  Google Scholar 

  • Lodovichi C, Berardi N, Pizzorusso T, Maffei L (2000) Effects of neurotrophins on cortical plasticity: same or different? J Neurosci 20:2155–2165

    PubMed  CAS  Google Scholar 

  • Lu B, Figurov A (1997) Role of neurotrophins in synapse development and plasticity. Rev Neurosci 8:1–12

    PubMed  CAS  Google Scholar 

  • Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 8:603–614

    Article  CAS  Google Scholar 

  • Machado-Vieira R, Dietrich MO, Leke R, Cereser VH, Zanatto V, Kapczinski F, Souza DO, Portela LV, Gentil V (2007) Decreased plasma brain derived neurotrophic factor levels in unmedicated bipolar patients during manic episode. Biol Psychiatry 61:142–144

    Article  PubMed  CAS  Google Scholar 

  • Mallinckrodt CH, Prakash A, Andorn AC, Watkin JG, Wohlreich MM (2006) Duloxetine for the treatment of major depressive disorder: a closer look at efficacy and safety data across the approved dose range. J Clin Psychiatry 40:337–348

    Google Scholar 

  • Manji HK, Moore GJ, Rajkowska G, Chen G (2000) Neuroplasticity and cellular resilience in mood disorders. Mol Psychiatry 5:578–593

    Article  PubMed  CAS  Google Scholar 

  • Marano CM, Phatak P, Vemulapalli UR, Sasan A, Nalbandyan MR, Ramanujam S, Soekadar S, Demosthenous M, Regenold WT (2007) Increased plasma concentration of brain-derived neurotrophic factor with electroconvulsive therapy: a pilot study in patients with major depression. J Clin Psychiatry 68:512–517

    Article  PubMed  CAS  Google Scholar 

  • Martin-Iverson MT, Todd KG, Altar CA (1994) Brain-derived neurotrophic factor and neurotrophin-3 activate striatal dopamine and serotonin metabolism and related behaviors: interactions with amphetamine. J Neurosci 14:1262–1270

    PubMed  CAS  Google Scholar 

  • Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Messaoudi E, Ying SW, Kanhema T, Croll SD, Bramham CR (2002) Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J Neurosci 22:7453–7461

    PubMed  CAS  Google Scholar 

  • Molnar M, Potkin SG, Bunney WE, Jones EG (2003) MRNA expression patterns and distribution of white matter neurons in dorsolateral prefrontal cortex of depressed patients differ from those in schizophrenia patients. Biol Psychiatry 53:39–47

    Article  PubMed  CAS  Google Scholar 

  • Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547

    PubMed  CAS  Google Scholar 

  • Nibuya M, Takahashi M, Russell DS, Duman RS (1999) Repeated stress increases catalytic TrkB mRNA in rat hippocampus. Neurosci Lett 267:81–84

    Article  PubMed  CAS  Google Scholar 

  • Okamoto H, Shino Y, Hashimoto K, Kumakiri C, Shimizu E, Shirasawa H, Iyo M (2003) Dynamic changes in AP-1 transcription factor DNA binding activity in rat brain following administration of antidepressant amitriptyline and brain-derived neurotrophic factor. Neuropharmacology 45:251–259

    Article  PubMed  CAS  Google Scholar 

  • Okragly AJ, Haak-Frendscho M (1997) An acid-treatment method for the enhanced detection of GDNF in biological samples. Exp Neurol 145:592–596

    Article  PubMed  CAS  Google Scholar 

  • Papakostas GI, Thase ME, Fava M, Nelson JC, Shelton RC (2007) Are antidepressant drugs that combine serotoninergic and noradrenergic mechanisms of action more effective than the selective serotonin reuptake inhibitors in treating major depressive disorder? A meta-analyis of newer agents. Biol Psychiatry 62(11):1217–1227

    Article  PubMed  CAS  Google Scholar 

  • Pattabiraman PP, Troppa D, Chiaruttini C, Tongiorgi E, Cattaneo A, Domenici L (2005) Neuronal activity regulates the developmental expression and subcellular localization of cortical BDNF mRNA isoforms in vivo. Mol Cell Neurosci 28:556–570

    Article  PubMed  CAS  Google Scholar 

  • Piccinni A, Marazziti D, Catena M, Domenici L, Del Debbio A, Bianchi C, Mannari C, Martini C, Da Pozzo E, Schiavi E, Mariotti A, Roncaglia I, Palla A, Consoli G, Giovannini L, Massimetti G, Dell’osso, L (2008) Plasma and serum brain-derived neurotrophic factor (BDNF) in depressed patients during 1 year of antidepressant treatments. J Affect Disord 105:279–283

    Article  PubMed  CAS  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC, Roth BL, Stockmeier CA (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45:1085–1098

    Article  PubMed  CAS  Google Scholar 

  • Sermasi E, Margotti E, Cattaneo A, Domenici L (2000) Trk B signalling controls LTP but not LTD expression in the developing rat visual cortex. Eur J Neurosi 12:1411–1419

    Article  CAS  Google Scholar 

  • Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H, Shinoda N, Okada S, Iyo M (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54:70–75

    Article  PubMed  CAS  Google Scholar 

  • Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM (1997) Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 56:131–137

    Article  PubMed  CAS  Google Scholar 

  • Skolnick P, Legutko B, Li X, Bymaster FP (2001) Current perspectives on the development of non-biogenic amine-based antidepressants. Pharmacol Res 43:411–423

    Article  PubMed  CAS  Google Scholar 

  • Shoval G, Weizman A (2005) The possible role of neurotrophins in the pathogenesis and therapy of schizophrenia. Eur Neuropsychopharmacol 15:319–329

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Makino S, Kim SY, Kvetnansky R (1995a). Stress increases brain-derived neurotropic factor messenger ribonucleic acid in the hypothalamus and pituitary. Endocrinology 136:3743–3750

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Makino S, Kvetnansky R, Post RM (1995b). Effects of stress on neurotrophic factor expression in the rat brain. Ann N Y Acad Sci 771:234–239

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Makino S, Kvetnansky R, Post RM (1995c). Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15:1768–1777

    PubMed  CAS  Google Scholar 

  • Smith D, Dempster C, Glanville J, Freemantle N, Anderson I (2002) Efficacy and tolerability of venlafaxine compared with selective serotonin reuptake inhibitors and other antidepressants: a meta-analysis. Br J Psychiatry 180:396–404

    Article  PubMed  Google Scholar 

  • Stahl SM, Entsuah R, Rudolph RL (2002) Comparative efficacy between venlafaxine and SSRIs: a pooled analysis of patients with depression. Biol Psychiaty 52:1166–1174

    Article  CAS  Google Scholar 

  • Takahashi M, Shirakawa O, Toyooka K, Kitamura N, Hashimoto T, Maeda K, Koizumi S, Wakabayashi K, Takahashi H, Someya T, Nawa H (2000) Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol Psychiatry 5:293–300

    Article  PubMed  CAS  Google Scholar 

  • Thase ME, Entsuah AR, Rudolph RL (2001) Remission rates during treatment with venlafaxine or selective serotonin reuptake inhibitors. Br J Psychiatry 178:234–441

    Article  PubMed  CAS  Google Scholar 

  • Thome J, Sakai N, Shin K, Steffen C, Zhang YJ, Impey S, Storm D, Duman RS (2000) cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 20:4030–4036

    PubMed  CAS  Google Scholar 

  • Tiraboschi E, Tardito D, Kasahara J, Moraschi S, Pruneri P, Gennarelli M, Racagni G, Popoli M (2004) Selective phosphorylation of nuclear CREB by fluoxetine is linked to activation of CaM kinase IV and MAP kinase cascades. Neuropsychopharmacology 29:1831–1840

    Article  PubMed  CAS  Google Scholar 

  • Tongiorgi E, Domenici L, Simonato M (2006) What is the Biological Significance of BDNF mRNA Targeting in the Dendrites? Clues From Epilepsy and Cortical Development. Mol Neurobiol 33:17–32

    Article  PubMed  CAS  Google Scholar 

  • Ueyama T, Kawai Y, Nemoto K, Sekimoto M, Tone S, Senba E (1997) Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res 28:103–110

    Article  PubMed  CAS  Google Scholar 

  • Wieczorek I, Schulz C, Jarry H, Lehnert H (2001) The effects of the selective serotonin reuptake-inhibitor fluvoxamine on body weight in Zucker rats are mediated by corticotropin-releasing hormone. Int J Obes Relat Metab Disord 25:1566–1569

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Gottschalk W, Chow A, Wilson RI, Schnell E, Zang K, Wang D, Nicoll RA, Lu B, Reichardt LF (2000) The role of brain-derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mechanism involving TrkB. J Neurosci 20:6888–6897

    PubMed  CAS  Google Scholar 

  • Yamada S, Yamamoto M, Ozawa H, Riederer P, Saito T (2003) Reduced phosphorylation of cyclic AMP-responsive element binding protein in the postmortem orbitofrontal cortex of patients with major depressive disorder. J Neural Transm 110:671–680

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura R, Mitoma M, Sugita A, Hori H, Okamoto T, Umene W, Ueda N, Nakamura J (2007) Effects of paroxetine or milnacipran on serum brain-derived neurotrophic factor in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 31:1034–1037

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Gary Scialdone for revising the manuscript. This work was supported by Eli Lilly, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Domenici.

Additional information

Claudio Mannari and Nicola Origlia are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mannari, C., Origlia, N., Scatena, A. et al. BDNF Level in the Rat Prefrontal Cortex Increases Following Chronic but Not Acute Treatment with Duloxetine, a Dual Acting Inhibitor of Noradrenaline and Serotonin Re-uptake. Cell Mol Neurobiol 28, 457–468 (2008). https://doi.org/10.1007/s10571-007-9254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9254-x

Keywords

Navigation