Skip to main content
Log in

Immunohistochemical and Biochemical Analyses of LGI3 in Monkey Brain: LGI3 Accumulates in Aged Monkey Brains

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Leucine-rich glioma inactivated (LGI) 3 encodes a leucine-rich repeat protein. The precise function of LGI3, however, remains unknown. We have previously shown that amyloid-β peptide (Aβ) upregulates LGI3 and that Aβ and LGI3 colocalize on plasma membranes of cultured rat astrocytes. In the present study, we performed immunohistochemical and biochemical analyses of LGI3 using various aged monkey brains. Immunohistochemistry showed that LGI3 was present in almost all neural cells and mainly localized at plasma membranes and nuclei. In aged monkey brains, we found that LGI3 accumulated on or near the plasma membranes of neurons, and colocalized with endocytosis-associated proteins and lipid raft markers. Double immunohistochemistry also showed that LGI3 colocalized with Aβ in astrocytes of aged brains. Moreover, Western blot analyses revealed that LGI3 may be cleaved in brain. Additionally, in aged monkeys LGI3 accumulated in microsomal and nuclear brain fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bahr BA, Bendiske J (2002) The neuropathogenic contributions of lysosomal dysfunction. J Neurochem 83(3):481–489

    Article  PubMed  CAS  Google Scholar 

  • Bendiske J, Bahr BA (2003) Lysosomal activation is a compensatory response against protein accumulation and associated synaptopathogenesis—an approach for slowing Alzheimer disease? J Neuropathol Exp Neurol 62(5):451–463

    PubMed  CAS  Google Scholar 

  • Buchanan SG, Gay NJ (1996) Structural and functional diversity in the leucine-rich repeat family of proteins. Prog Biophys Mol Biol 65:1–44

    Article  PubMed  CAS  Google Scholar 

  • Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA (2000) Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 157(1):277–286

    PubMed  CAS  Google Scholar 

  • Chen F, Gu Y, Hasegawa H, Ruan X, Arakawa S, Fraser P, Westaway D, Mount H, St. George-Hyslop P (2002) Presenilin 1 mutations activate Aβ42 secretase but reciprocally inhibit ε-secretase cleavage of APP and S3-cleavage of Notch. J Biol Chem 277:36521–36526

    Article  PubMed  CAS  Google Scholar 

  • Ebino JO, Yankner BA (2002) A RIPtide in neuronal signal transduction. Neuron 34:499–502

    Article  Google Scholar 

  • Fukamachi K, Matsuoka Y, Ohno H, Hamaguchi T, Tsuda H (2002) Neuronal leucine-rich repeat protein-3 amplifies MAPK activation by epidermal growth factor through a carboxyl-terminal region containing endocytosis motifs. J Biol Chem 277(46):43549–43552

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG (1988a) Alzheimer’s disease: its proteins and genes. Cell 52(3):307–308

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG (1988b) The proteins and genes of Alzheimer’s disease. Biomed Pharmacother 42(9):579–854

    PubMed  CAS  Google Scholar 

  • Greenwald I (1998) LIN-12/Notch signaling: lessons from worms and flies. Genes Dev 12(12):1751–1762

    PubMed  CAS  Google Scholar 

  • Gu W, Wevers A, Hannsjorg S, Grzeschik KH, Derst C, Brodtkorb E, De Vos R, Steinlein OK (2002) The LGI1 gene involved in lateral temporal lobe epilepsy belongs to a new subfamily of leucine-rich repeat proteins. FEBS Lett 519:71–76

    Article  PubMed  CAS  Google Scholar 

  • Ikonen E (2001) Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 13(4):470–477 Review

    Article  PubMed  CAS  Google Scholar 

  • Kimura N, Nakamura S, Honda T, Takashima A, Nakayama H, Ono F, Sakakibara I, Doi K, Kawamura S, Yoshikawa Y (2001) Age-related changes in the localization of presenilin-1 in cynomolgus monkey brain. Brain Res 922:30–41

    Article  PubMed  CAS  Google Scholar 

  • Kimura N, Tanemura K, Nakamura S, Takashima A, Ono F, Sakakibara I, Ishii Y, Kyuwa S, Yoshikawa Y (2003) Age-related changes of Alzheimer’s disease-associated proteins in cynomolgus monkey brains. Biochem Biophys Res Comm 310:303–311

    Article  PubMed  CAS  Google Scholar 

  • Kimura N, Yanagisawa K, Terao K, Ono F, Sakakibara I, Ishii Y, Kyuwa S, Yoshikawa Y (2005) Age-related changes of intracellular Aβ in cynomolgus monkey brains. Neuropathol Appl Neurobiol 1(2):170–180

    Article  CAS  Google Scholar 

  • Kimura N, Ishii Y, Suzaki S, Negishi T, Kyuwa S, Yoshikawa Y (2007) Aβ upregulates and colocalizes with LGI3 in rat cultured astrocytes. Cell Mol Neurobiol 273:335–350

    Article  CAS  Google Scholar 

  • Kobe B, Deisenfofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19:415–421

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430(7000):631–639

    Article  PubMed  CAS  Google Scholar 

  • Molander-Melin M, Blennow K, Bogdanovic N, Dellheden B, Mansson JE, Fredman P (2005) Structural membrane alterations in Alzheimer brains found to be associated with regional disease development; increased density of gangliosides GM1 and GM2 and loss of cholesterol in detergent-resistant membrane domains. J Neurochem 92(1):171–182

    Article  PubMed  CAS  Google Scholar 

  • Mousavi SA, Malerod L, Berg T, Kjeken R (2004) Clathrin-dependent endocytosis. Biochem J 377(Pt 1):1–16 Review

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Nakayama H, Goto N, Sakakibara I, Yosikawa Y (1998) Histopathological studies of senile plaques and cerebral amyloidosis in cynomolgus monkeys. J Med Primatol 27(5):244–252

    PubMed  CAS  Google Scholar 

  • Nixon RA (2005) Endosome function and dysfunction in Alzheimer’s disease and other neurodegenerative diseases. Neurobiol Aging 26(3):373–382

    Article  PubMed  CAS  Google Scholar 

  • Pasternak SH, Callahan JW, Mahuran DJ (2004) The role of the endosomal/lysosomal system in amyloid-beta production and the pathophysiology of Alzheimer’s disease: reexamining the spatial paradox from a lysosomal perspective. J Alzheimers Dis 6(1):53–65

    PubMed  CAS  Google Scholar 

  • Sastre M, Steiner H, Fuchs K, Cappell A, Multhaup G, Condron MM, Teplow DB, Haass C (2001) Presenilin-dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep 2:835–841

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Hata M, Yokota H (2002) A novel member of the leucine-rich repeat superfamily induced in rat astrocytes by beta-amyloid. Biochem Biophys Res Commun 290(2):756–762

    Article  PubMed  CAS  Google Scholar 

  • Scheel H, Tomiuk S, Hofmann K (2002) A common protein interaction domain links two recently identified epilepsy genes. Hum Mol Genet 11(15):1757–1762

    Article  PubMed  CAS  Google Scholar 

  • Schulte U, Thumfart JO, Klocker N, Sailer CA, Bildl W, Biniossek M, Dehn D, Deller T, Eble S, Abbass K, Wangler T, Knaus HG, Fakler B (2006) The Epilepsy-linked LGI1 protein assembles into presynaptic KV1 cannels and inhibits inactivation by KVβ1. Neuron 49(5):697–706

    Article  PubMed  CAS  Google Scholar 

  • Senechal KR, Thaaller C, Noebels JL (2005) ADPEAF mutations reduce levels of secreted LGI1, a putative tumor suppressor protein linked to epilepsy. Human Mol Genet 14(12):1613–1620

    Article  CAS  Google Scholar 

  • Tamai Y, Kojima H, Ohtani Y, Uchida K, Taguchi F, Kawaguchi T, Miura S, Tateishi J (1989) Subcellular distribution of the transmissible agent in Creutzfeldt-Jakob disease mouse brain. Microbiol Immunol 33(1):35–42

    PubMed  CAS  Google Scholar 

  • Vance JE, Campenot RB, Vance DE (2000) The synthesis and transport of lipids for axonal growth and nerve regeneration. Biochim Biophys Acta 1486(1):84–96 Review

    PubMed  CAS  Google Scholar 

  • Weidemann A, Eggert S, Reinhard FBM, Vogel M, Paliga K, Bailer G, Masters CL, Beyreuther K, Evin G (2002) A novel ε-cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with Notch processing. Biochemistry 41:2825–2835

    Article  PubMed  CAS  Google Scholar 

  • Younkin SG (1994) The amyloid beta protein precursor mutations linked to familial Alzheimer’s disease alter processing in a way that fosters amyloid deposition. Tohoku J Exp Med 174:217–223

    Article  PubMed  CAS  Google Scholar 

  • Yu C, Kim S-H, Ikeuchi T, Xu H, Gasparini L, Wang R, Sisodia SS (2001) Characterization of a presenilin-mediated amyloid precursor carboxyl-terminal fragment γ. J Biol Chem 276:43756–43760

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant-in-aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (18790288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Kimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okabayashi, S., Kimura, N. Immunohistochemical and Biochemical Analyses of LGI3 in Monkey Brain: LGI3 Accumulates in Aged Monkey Brains. Cell Mol Neurobiol 27, 819–830 (2007). https://doi.org/10.1007/s10571-007-9205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9205-6

Keywords

Navigation