Skip to main content

Advertisement

Log in

Aβ Upregulates and Colocalizes with LGI3 in Cultured Rat Astrocytes

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

 

1. The leucine-rich glioma inactivated (LGI) family of genes encodes a leucine-rich repeat (LRR) protein, proteins that are thought to be specifically involved in protein–protein and protein–matrix interactions. Since amyloid beta peptide (Aβ) has been previously shown to induce the expression of another LRR-encoding gene in neural cells, we assessed how Aβ affects LGI gene expression in rat primary cerebral cortical cultures and astrocyte cultures. Both RT-PCR and Western Blotting analyses revealed that Aβ robustly induced the expression of LGI3 in rat astrocyte cultures.

2. Western Blotting analyses also showed that both glial fibrillary acidic protein (GFAP) and apolipoprotein E (ApoE) significantly increased coincidentally with the Aβ-induced upregulation of LGI3. Immunocytochemistry showed that LGI3 colocalized with Aβ at plasma membranes and also with internalized Aβ in astrocytes. These findings suggest that activated LGI3 may be involved in the astroglial response against Aβ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  • Behl, C., Davis, J., Cole, G. M., and Schubert, D. (1992). Vitamin E protects nerve cells from amyloid β protein toxicity. Biochem. Biophys. Res. Commun. 186:944–952.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan, S. G., and Gay, N. J. (1996). Structural and functional diversity in the leucine-rich repeat family of proteins. Prog. Biophys. Mol. Biol. 65:1–44.

    Article  PubMed  CAS  Google Scholar 

  • Burdick, D., Soreghan, B., Kwon, M., Kosmoski, J., Knauer, M., Henshen, A., Yates, J., Cotman, C., and Glabe, C. (1992). Assembly and aggregation properties of synthetic Alzheimer's A4/beta amyloid peptide analogs. J. Biol. Chem. 267:546–554.

    PubMed  CAS  Google Scholar 

  • Busciglio, J., Gabuzda, D. H., Matsudaira, P., and Yankner, B. A. (1993). Generation of β-amyloid in the secretory pathway in neuronal and non-neuronal cells. Proc. Natl. Acad. Sci. U.S.A. 90:2092–2096.

    Article  PubMed  CAS  Google Scholar 

  • Chen, F., Gu, Y., Hasegawa, H., Ruan, X., Arakawa, S., Fraser, P., Westaway, D., Mount, H., and St. George-Hyslop, P. (2002). Presenilin 1 mutations activate Aβ42 secretase but reciprocally inhibit e-secretase cleavage of APP and S3-cleavage of Notch. J. Biol. Chem. 277:36521–36526.

    Article  PubMed  CAS  Google Scholar 

  • Deb, S., Zhang, J. W., and Gottschall, P. E. (2003). β-amyloid induces the production of active, matrix-degrading proteases in rat cultured rat astrocytes. Brain Res. 970:205–213.

    Article  PubMed  CAS  Google Scholar 

  • Ebino, J. O., and Yankner, B. A. (2002). A RIP tide in neuronal signal transduction. Neuron 34:499–502.

    Article  Google Scholar 

  • Eddleston, M., and Mucke, L. (1993). Molecular profile of reactive astrocytes—Implications for their role in neurologic disease. Neuroscience 54:15–36.

    Article  PubMed  CAS  Google Scholar 

  • Funato, H., Yoshimura, M., Yamazaki, T., Saido, T. C., Ito, Y., Yokohujita, J., Okeda, R., and Ihara, Y. (1998). Astrocytes containing amyloid beta-protein (Abeta)-positive granules are associated with Abeta40-positive diffuse plaques in the aged human brain. Am. J. Pathol. 152:983–992.

    PubMed  CAS  Google Scholar 

  • Glenner, G. G. (1988). Alzheimer's disease: Its proteins and genes. Cell 52:307–308.

    Article  PubMed  CAS  Google Scholar 

  • Greenwald, I. (1998). LIN-12/Notch signaling: Lessons from worms and flies. Genes Dev. 12(12):1751–1762.

    PubMed  CAS  Google Scholar 

  • Gu, W., Wevers, A., Hannsjorg, S., Grzeschik, K.-H., Derst, C., Brodtkorb, E., De Vos, R., and Steinlein, O. K. (2002). The LGI1 gene involved in lateral temporal lobe epilepsy belongs to a new subfamily of leucine-rich repeat proteins. FEBS Lett. 519:71–76.

    Article  PubMed  CAS  Google Scholar 

  • Haas, C., Sclossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D., Teplow, D. B., and Selkoe, D. J. (1992). Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325.

    Article  Google Scholar 

  • Jarrett, J. T., Berger, E. P., and Lansbury, P. T., Jr. (1993). The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer's disease. Biochemistry 32:4693–4697.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, N., Negishi, T., Ishii, Y., Kyuwa, S., and Yoshikawa, Y. (2004). Astroglial responses against Abeta initially occur in cerebral primary cortical cultures: Species differences between rat and cynomolgus monkey. Neurosci. Res. 49(3):339–346.

    Article  PubMed  Google Scholar 

  • Kobe, B., and Deisenfofer, J. (1994). The leucine-rich repeat: A versatile binding motif. Trends Biochem. Sci. 19:415–421.

    Article  PubMed  CAS  Google Scholar 

  • Koh, J., Yang, L. L., and Cotman, C. W. (1990). β amyloid protein increase the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res. 533:315–320.

    Article  PubMed  CAS  Google Scholar 

  • LaDu, M. J., Shah, J. A., Reardon, C. A., Getz, G. S., Bu, G., Hu, J., Guo, L., and Van Eldik, L. J. (2001). Apolipoprotein E and apolipoprotein E receptors modulate Ab-induced glial neuroinflammatory responses. Neurochem. Int. 39:427–434.

    Article  PubMed  CAS  Google Scholar 

  • Mark, R. E., Sheng, J. G., and Griffin, S. T. (1995). Glial cytokines in Alzheimer's disease: Review and pathogenic implications. Hum. Pathol. 26:816–823.

    Article  Google Scholar 

  • Matsunaga, W., Shirokawa, T., and Isobe, K. (2003). Specific uptake of Aβ 1-40 in rat brain occurs in astrocyte, but not in microglia. Neurosci. Lett. 342:129–131.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R. (1992). β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12:376–389.

    PubMed  CAS  Google Scholar 

  • McGeer, P. L., and McGeer, E. G. (1995). The inflammatory response system of brain: Implication for therapy of Alzheimer and other neurodegenerative diseases. Brain. Res. Rev. 21:195–218.

    Article  PubMed  CAS  Google Scholar 

  • Negishi, T., Ishii, Y., Kawamura, S., Kuroda, Y., and Yoshikawa, Y. (2002). Cryopreservation of brain tissue for primary culture. Exp. Anim. 51:383–390.

    Article  PubMed  CAS  Google Scholar 

  • Negishi, T., Ishii, Y., Kyuwa, S., Kuroda, Y., and Yoshikawa, Y. (2003). Primary culture of cortical neurons, type-1 astrocytes, and microglial cells from cynomolgus monkey (Macaca fascicularis) fetuses. J. Neurosci. Methods 131:133–140.

    Article  PubMed  CAS  Google Scholar 

  • Sastre, M., Steiner, H., Fuchs, K., Cappell, A., Multhaup, G., Condron, M. M., Teplow, D. B., and Haass, C. (2001). Presenilin-dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. 2:835–841.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, K., Hata, M., and Yokota, H. (2002). A novel member of the leucine-rich repeat superfamily induced in rat astrocytes by b-amyloid. Biochem. Biophys. Res. Commun. 290:756–762.

    Article  CAS  Google Scholar 

  • Schulte, U., Thumfart, J.-O., Klocker, N., Sailer, C. A., Bildi, W., Miniossek, M., Dehn D., Deller T., Eble, S., Abbass, K., Wangler, T., Knaus, H.-G., and Fakler, B. (2006). The epilepsy-linked lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvb1. Neuron 49:697–706.

    Article  PubMed  CAS  Google Scholar 

  • Seubert, P., Vigo-Pelfrey, C., Esch, F., Lee, M., Dovey, H., Davis, D., Sinha, S., Schlossmacher, M., Whaley, J., Swindlehurst, C., McCormack, R., Wolfert, R., Selkoe, D. J., Lieberburg, I., and Schenk, D. B. (1992). Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids. Nature 359:325–327.

    Article  PubMed  CAS  Google Scholar 

  • Shoji, M., Golde, T. E., Ghiso, J., Cheung, T. T., Estus, S., Shaffer, L. M., Cai, X. D., McKay, D. M., Tintner, R., Frangione, B., and Younkin, S. G. (1992). Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 258:126–129.

    Article  PubMed  CAS  Google Scholar 

  • Smits, H. A., Rijsmus, A., Van Loon, J. H., Wat, J. W. Y., Verhoef, J., Boven, L. A., and Nottet, H. S. L. M. (2002). Amyloid-β-induced chemokine production in primary human macrophages and astrocytes. J. Neuroimmnol. 127:160–168.

    Article  CAS  Google Scholar 

  • Suzuki, N., Cheung, T. T., Cai, X. D., Odaka, A., Otvos, L. Jr., Eckman, C., Golde, T. E., and Younkin, S. G. (1994). An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 264:1336–1340.

    Article  PubMed  CAS  Google Scholar 

  • Vigo-Pelfrey, C., Lee, D., Keim, P., Lieberburg, I., and Schenk, D. B. (1993). Characterization of beta-amyloid peptide from human cerebrospinal fluid. J. Neurochem. 61:1965–1968.

    Article  PubMed  CAS  Google Scholar 

  • Weidemann, A., Eggert, S., Reinhard, F. B. M., Vogel, M., Paliga, K., Bailer, G., Masters, C. L., Beyreuther, K., and Evin, G. (2002) A novel ε-cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with Notch processing. Biochemistry 41:2825–2835.

    Article  PubMed  CAS  Google Scholar 

  • Wyss-Coray, T., Loike, J. D., Brionne, T. C., Lu, E., Anankov, R., Yan, F., Silverstein, S. C., and Husemann, J. (2003). Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat. Med. 9:453–457.

    Article  PubMed  CAS  Google Scholar 

  • Yankner, B. A., Duffy, L. K., and Kirschner, D. A. (1990). Neurotrophic and neurotoxic effects of amyloid β protein: Reversal by tachykinin neuropeptides. Science 25:279–282.

    Article  Google Scholar 

  • Younkin, S. G. (1994). The amyloid beta protein precursor mutations linked to familial Alzheimer's disease alter processing in a way that fosters amyloid deposition. Tohoku J. Exp. Med. 174:217–223.

    Article  PubMed  CAS  Google Scholar 

  • Yu, C., Kim, S.-H., Ikeuchi, T., Xu, H., Gasparini, L., Wang, R., and Sisodia, S. S. (2001) Characterization of a presenilin-mediated amyloid precursor carboxyl-terminal fragment g. J. Biol. Chem. 276:43756–43760.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by a grant-in-aid from Research on Human Genome, Tissue Engineering, Ministry of Health, Labor, and Welfare, Japan. The authors are especially thankful to the MBL Company for producing the LGI3-specific antibody anti-TA142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Kimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, N., Ishii, Y., Suzaki, S. et al. Aβ Upregulates and Colocalizes with LGI3 in Cultured Rat Astrocytes. Cell Mol Neurobiol 27, 335–350 (2007). https://doi.org/10.1007/s10571-006-9127-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9127-8

KEY WORDS:

Navigation