Skip to main content
Log in

Immunophenotypic and Ultrastructural Validation of a New Human Glioblastoma Cell Line

  • Rapid Communication
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    A human glioma cell line, NG97, was established by Grippo et al. in 2001 from tissue obtained from a grade III astrocytoma (WHO, 2000). In this first study, the cell line grew as two morphologically distinct subpopulations: dendritic/spindle cells and small round cells. The injection of NG97 cells into nude mice induced an aggressive tumor characterized by: severe cytological atypia, vascular proliferation and pseudopalisading necrosis (glioblastoma multiforme features).

  2. 2.

    The purpose of the present study was to characterize the immunophenotype and ultrastructural aspects of this cell line, using the parental tumor, cultured cells and the xenotransplant, in order to assess its glial nature and possible divergent differentiation.

  3. 3.

    NG97 cells and xenotransplant expressed the main neuroglial markers (GFAP, S-100 protein, NSE and Leu-7) and showed no aberrant expression of other histogenetic markers. GFAP was similarly expressed in the parental tumor and in the cells in culture, but decreased in the xenotransplant. NSE expression was reduced in NG97 cells, but substantially recovered in the xenotransplant. This variability in expression of GFAP and NSE was interpreted as either a phenomenon of dedifferentiation or to microenvironmental selection of specific subclones. S-100 was equally expressed in the three contexts. The xenotransplant’s ultrastructural features were those of a highly undifferentiated tumor. No significant immunophenotypic or ultrastructural differences between the two morphologically distinct populations were found.

  4. 4.

    Thus, our data demonstrate that NG97 cells constitute a pure glial-committed cell line, which may prove useful as a malignant glioma model in studies addressing pathophysiological, diagnostic and therapeutic issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cavenee, W. K., Furnari, F. B, Nagane, M., et al. (2000). Diffusely infiltrating astrocytomas. In Kleihues P. & Cavenee, W. K. (eds.), WHO’s Pathology & Genetics of Tumours of Nervous System. IARC Press, Lyon, France.

    Google Scholar 

  • Chauvenic, L., Sola-Martinez, M. T., Martin-Duverneuil, M., et al. (1996). Intraarterial chemotherapy with ACNU and radiotherapy in inoperable malignant gliomas. J. Neuro-oncol. 27:141–147.

    Google Scholar 

  • Damek, D. M., and Hochberg, F.,H. (1997). Clinical aspects of brain tumor. Curr. Opin. Neurol. 10:452–458.

    PubMed  Google Scholar 

  • Diserens, A. C., Tribolet, N., Martin-Achard, A., Gaide, A. C., Schnegg, J. F., and Canel, S. (1981). Characterization of an established human malignant glioma cell line: LN-18. Acta Neuropathol. (Berl) 53:21–28.

    Article  Google Scholar 

  • Ellison, D., Love, S., Chimelli, L., et al. (1998). Neuropathology; A reference text of CNS pathology. Mosby, London, pp. 35:1–35.10.

    Google Scholar 

  • Erlandson, R. A. (1994). Diagnostic Transmission Electron Microscopy of Tumors with Clinicopathological, Immunohistochemical and Cytogenetic Correlations. Ranven Press, New York, pp. 388–396.

    Google Scholar 

  • Grippo, M. C., Penteado, P. F., Carelli, E. F., Cruz-Höfling, M. A., and Verinaud, L. (2001). Establishment and partial characterization of a continuous human malignant glioma cell line: NG97. Cell. Mol. Neurobiol. 21(4):421–428.

    Article  PubMed  Google Scholar 

  • Kleihues, P., Burger, P. C., Collins, V. P., Newcomb, E. W., Ohgaki, H., and Cavenee, W. K. (2000). Glioblastoma. In Kleihues P., and Cavenee, W. K. (eds.), WHO’s Pathology and Genetics of Tumours of Nervous System. IARC Press, Lyon, France.

    Google Scholar 

  • Kruse, C. A., Varella-Garcia, M., and Kleischmidt-Demasters, B. K., et al. (1998). Receptor expression, cytogenetic, and molecular analysis of six continuous human glioma cell lines. In Vitro Cell. Dev. Biol.—Animal 34:455–462.

    Google Scholar 

  • Laerum, O. D., Steinsvag, S., and Bjerkvig, R. (1985). Cell and tissue culture of the central nervous system: recent developments and current applications. Acta Neurol. Scand. 72:529–549.

    PubMed  Google Scholar 

  • Laws, Jr. E. R., and Thapar, K. (1993). Brain tumors. CA: A Cancer J. Clin. 43:263–271.

    Google Scholar 

  • Linskey, M. E., and Gilbert, M. R. (1995). Glial differentiation: A review with implications for new directions in neuro-oncology. Neurosurgery 36(1): 1–21.

    PubMed  Google Scholar 

  • Metze, K., and Andrade, L. A. L. A. (1991). Atypical stromal giant cells of cervix uteri—evidence of schwann cell origin. Pathol. Res. Pract. 187:1031–1035.

    PubMed  Google Scholar 

  • Nederman, T. (1984). Effect of vinblastine and 5-fluorouracil on human glioma and thyroid cancer cell monolayers and spheroids. Cancer Res. 3:209–212.

    Google Scholar 

  • Michailowsky, C., Niura, F. K., do Valle, A. C., et al. (2003). Experimental tumors of the central nervous system: standardization of a model in rats using the 9L glioma cells. Arquivos de Neuropsiquiatria 61(2A): 234–240.

    Google Scholar 

  • Morrison, C. D., and Prayson, R. A. (2000). Immunohistochemistry in the diagnosis of neoplasms of the central nervous system. Semin. Diagn. Pathol. 17(3): 204–215.

    PubMed  Google Scholar 

  • Prados, M. D., and Levin, V. (2000). Biology and treatment of malignant glioma. Semin. Oncol. 27(3, suppl 6):1–10.

    Google Scholar 

  • Saroja, K. R., Mansell, J., Hendrikson, F. R., Cohen, L., and Lenox, A. (1989). Failure of accelerated neutron therapy to control high grade astrocytomas. Int. J. Radiat. Oncol. Biol. Phys. 17:1295–1297.

    PubMed  Google Scholar 

  • Schiffer, D., Giordana, M. T., and Germano, I., et al. (1986). Anaplasia and heterogeneity of GFAP expression in gliomas. Tumori 72:163–170.

    PubMed  Google Scholar 

  • Solimene, A. C. C, Carneiro, C. R. W., Melati, I., and Lopes, J. D. (2001). Functional differences between two morphologically distinct cell subpopulations within a human colorectal carcinoma cell line. Brazilian J. Med. Biol. 34:653–661.

    Google Scholar 

  • Takeshita, I., Sawa, H., Nakamura, T., Kuramitsu, M., Kitamura, K., and Fukui, M. (1990). Contrary effect of lactic acid expression of neuron-specific enolase and glial fibrillary acidic protein in human glioma cells. Acta Neuropathol. (Berl) 79(5):506–512.

    Article  Google Scholar 

  • Trentin, A. G., and Alvarez-Silva, M. (1998). Thyroid hormone regulates protein expression in C6 glioma cells. Brazillian J. Med. Biol. Res. 31:1281–1284.

    Google Scholar 

  • Welch, W. C., Morrison, R. S., Gross, J. L., Goclin, S. M., Kitson, R. B., Goldfarb, R. H., Giuliano, K. A., Bradley, M. K., and Kornblith, P. L. (1995). Morphologic, immunophenotypic, biochemical, and cytogenetic characteristics of the human glioblastoma-derived cell line, SNB-19. In Vitro Cell. Dev. Biol.—Animal 31:610–616.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenka, A.A., Machado, C.M.L., Grippo, M.C. et al. Immunophenotypic and Ultrastructural Validation of a New Human Glioblastoma Cell Line. Cell Mol Neurobiol 25, 929–941 (2005). https://doi.org/10.1007/s10571-005-4959-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-4959-1

Keywords

Navigation