Skip to main content
Log in

Lipophilic, nanocellulose based macroporous sponge loaded with mixed microorganisms for efficient elimination of petroleum hydrocarbon pollution in water

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The efficient elimination of petroleum hydrocarbon (PH) pollution remains a big challenge due to their easy accumulation and severe environmental toxicity. In this study, we demonstrated a novel nanocellulose based hydrophobic/lipophilic macroporous sponge loaded with microorganisms (B10NCS-DTMS, sponge prepared from nanocellulose: NCS, the NCS was immobilized 10 times: B10NCS, The B10NCS surface was sprayed with modified n-dodecyltrimethoxysilane: B10NCS-DTMS) for efficient elimination of PH pollution in water. Compared with the materials previously studied, this microporous/ superwetting structure can load more microorganisms and provide space and nutrients for the growth and reproduction of microorganisms, and mixed microorganisms have an excellent synergistic degradation effect, which greatly improves the degradation potential. We modified the surface of material loaded with microorganisms by using high stability modified long chain silane solution, which showed excellent selective adsorption performance. As expected, using a petroleum n-hexadecane solution with a concentration of 5% as model oily wastewater, B10NCS-DTMS possesses both a superior selective absorption of about 99% within 12 h and a high degradation rate of 95.85% within 96 h. In addition, B10NCS-DTMS showed more strong tolerance under different pH, temperature, and initial concentration conditions. Compared with other studies, the B10NCS-DTMS has the advantages of high biological activity, scalable manufacturing, no secondary pollution, and green and high efficiency, which might pave a new way to efficiently eliminate PH pollution from water.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abu-Thabit NY, Uwaezuoke OJ, Abu Elella MH (2022) Superhydrophobic nanohybrid sponges for separation of oil/ water mixtures. Chemosphere 294:133644

    Article  CAS  PubMed  Google Scholar 

  • Adetunji AI, Olaniran AO (2021) Treatment of industrial oily wastewater by advanced technologies: a review. Appl Water Sci 11:1–19

    Article  CAS  Google Scholar 

  • Al-Hawash AB, Zhang X, Ma F (2019) Removal and biodegradation of different petroleum hydrocarbons using the filamentous fungus Aspergillus sp. RFC-1. Microbiologyopen 8:e00619

    Article  PubMed  CAS  Google Scholar 

  • Barbash VA, Yashchenko OV, Vasylieva OA (2019) Preparation and properties of nanocellulose from miscanthus x giganteus. J Nanomater 2019:1–8

    Article  CAS  Google Scholar 

  • Bidja Abena MT, Chen G, Chen Z et al (2020) Microbial diversity changes and enrichment of potential petroleum hydrocarbon degraders in crude oil-, diesel-, and gasoline-contaminated soil. Biotech 10:42

    Google Scholar 

  • Chen Y, Yu B, Lin J et al (2016) Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material. Chem Eng J 289:463–470

    Article  CAS  Google Scholar 

  • Chen C, Weng D, Mahmood A et al (2019a) Separation mechanism and construction of surfaces with special wettability for oil/water separation. ACS Appl Mater Inter 11:11006–11027

    Article  CAS  Google Scholar 

  • Chen L, Lei Z, Luo X et al (2019b) Biological degradation and transformation characteristics of total petroleum hydrocarbons by oil degradation bacteria adsorbed on modified straw. ACS Omega 4:10921–10928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhao S, Yang Y et al (2019c) Study on degradation of oily wastewater by immobilized microorganisms with biodegradable polyacrylamide and sodium alginate mixture. ACS Omega 4:15149–15157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Xu K, Zhang Y et al (2021) Selective adsorption and efficient degradation of petroleum hydrocarbons by a hydrophobic/lipophilic biomass porous foam loaded with microbials. ACS Appl Mater Inter 13:53586–53598

    Article  CAS  Google Scholar 

  • Daghio M, Aulenta F, Vaiopoulou E et al (2017) Electrobioremediation of oil spills. Water Res 114:351–370

    Article  CAS  PubMed  Google Scholar 

  • De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631

    Article  CAS  Google Scholar 

  • Eum KY, Phiri I, Kim JW et al (2019) Superhydrophobic and superoleophilic nickel foam for oil/water separation. Korean J Chem Eng 36:1313–1320

    Article  CAS  Google Scholar 

  • Filho CMC, Matias T, Durães L et al (2017) Efficient simultaneous removal of petroleum hydrocarbon pollutants by a hydrophobic silica aerogel-like material. Colloid Surface A 520:550–560

    Article  CAS  Google Scholar 

  • Fu X, Qiao Y, Xue J et al (2021) Analyses of community structure and role of immobilized bacteria system in the bioremediation process of diesel pollution seawater. Sci Total Environ 799:149439. https://doi.org/10.1016/j.scitotenv.2021.149439

    Article  CAS  PubMed  Google Scholar 

  • Giese EC, Silva DDV, Costa AFM et al (2020) Immobilized microbial nanoparticles for biosorption. Crit Rev Biotechnol 40:653–666

    Article  CAS  PubMed  Google Scholar 

  • Hasanzadeh R, Souraki BA, Pendashteh A et al (2020) Application of isolated halophilic microorganisms suspended and immobilized on walnut shell as biocarrier for treatment of oilfield produced water. J Hazardous Mater 400:123197. https://doi.org/10.1016/j.jhazmat.2020.123197

    Article  CAS  Google Scholar 

  • Hou Y, Liu M, Zhang L et al (2020) Matchstick-like metal-organic framework-based superwetting materials for efficient multiphase liquid separation via filtration or adsorption. Sep Purif Technol 240:116598

    Article  CAS  Google Scholar 

  • Huang F, Li K, Wu R-R et al (2020) Insight into the Cd2+ biosorption by viable Bacillus cereus RC-1 immobilized on different biochars: Roles of bacterial cell and biochar matrix. J Clean Prod 272:122743

    Article  CAS  Google Scholar 

  • Jiang Y, Liu C, Li Y et al (2019) Stainless-steel-net-supported superhydrophobic COF coating for oil/water separation. J Membrane Sci 587:117177

    Article  CAS  Google Scholar 

  • Kong W, Li F, Pan Y et al (2021) Hygro-responsive, photo-decomposed superoleophobic/superhydrophilic coating for on-demand oil-water separation. ACS Appl Mater Inter 13:35142–35152

    Article  CAS  Google Scholar 

  • Kumari S, Regar RK, Manickam N (2018) Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresour Technol 254:174–179

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang H, Ma C et al (2019) Durable, cost-effective and superhydrophilic chitosan-alginate hydrogel-coated mesh for efficient oil/water separation. Carbohydr Polym 226:115279

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang Y, Luo T et al (2022) Remediation potential of immobilized bacterial strain with biochar as carrier in petroleum hydrocarbon and Ni co-contaminated soil. Environ Technol 43:1068–1081

    Article  CAS  PubMed  Google Scholar 

  • Lifshits S, Glyaznetsova Y, Erofeevskaya L et al (2021) Effect of oil pollution on the ecological condition of soils and bottom sediments of the arctic region (Yakutia). Environ Pollut 288:117680

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Chen K, Zheng S et al (2022) Facile fabrication of natural superhydrophobic eleostearic acid-SiO2@cotton fabric for efficient separation of oil/water mixtures and emulsions. Sustain Mater Techno 2022:e00418

    Google Scholar 

  • Liu C, Peng Y, Huang C et al (2022) Bioinspired superhydrophobic/superhydrophilic janus copper foam for on-demand oil/water separation. ACS Appl Mater Inter 14:11981–11988

    Article  CAS  Google Scholar 

  • Lobakova E, Vasilieva S, Kashcheeva P et al (2016) New bio-hybrid materials for bioremoval of crude oil spills from marine waters. Int Biodeter Biodegr 108:99–107

    Article  CAS  Google Scholar 

  • Lou L, Huang Q, Lou Y et al (2019) Adsorption and degradation in the removal of nonylphenol from water by cells immobilized on biochar. Chemosphere 228:676–684. https://doi.org/10.1016/j.chemosphere.2019.04.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nhi-Cong LT, Lien DT, Mai CTN et al (2021) Advanced materials for immobilization of purple phototrophic bacteria in bioremediation of oil-polluted wastewater. Chemosphere 278:130464

    Article  CAS  PubMed  Google Scholar 

  • Omajali JB, Hart A, Walker M et al (2017) In-situ catalytic upgrading of heavy oil using dispersed bionanoparticles supported on gram-positive and gram-negative bacteria. Appl Catal Environ 203:807–819

    Article  CAS  Google Scholar 

  • Partovinia A, Rasekh B (2018) Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments. Crit Rev Env Sci Tec 48:1–38

    Article  CAS  Google Scholar 

  • Phanthong P, Reubroycharoen P, Kongparakul S et al (2018) Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydr Polym 190:184–189

    Article  CAS  PubMed  Google Scholar 

  • Pi Y, Chen B, Bao M et al (2017) Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp. Bioresour Technol 232:263–269

    Article  CAS  PubMed  Google Scholar 

  • Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490

    Article  CAS  PubMed  Google Scholar 

  • Sam EK, Liu J, Lv X (2021) Surface engineering materials of superhydrophobic sponges for oil/water separation: a review. Ind Eng Chem Res 60:2353–2364

    Article  CAS  Google Scholar 

  • Santi F, Vella E, Jeffress K et al (2021) Phenotypic responses to oil pollution in a poeciliid fish. Environ Pollut 290:118023

    Article  CAS  PubMed  Google Scholar 

  • Sui X, Wang X, Li Y et al (2021) Remediation of petroleum-contaminated soils with microbial and microbial combined methods: advances, mechanisms, and challenges. Sustainability 13:9267

    Article  CAS  Google Scholar 

  • Suneel V, Rao VT, Suresh G et al (2019) Oil pollution in the eastern arabian sea from invisible sources: a multi-technique approach. Mar Pollut Bull 146:683–695

    Article  CAS  PubMed  Google Scholar 

  • Wan Ikhsan SN, Yusof N, Aziz F et al (2021) Superwetting materials for hydrophilic-oleophobic membrane in oily wastewater treatment. J Environ Manage 290:112565

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Fingas MF (2003) Development of oil hydrocarbon fingerprinting and identification techniques. Mar Pollut Bull 47:423–452

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li B, Li Y et al (2021) Research progress on enhancing the performance of autotrophic nitrogen removal systems using microbial immobilization technology. Sci Total Environ 774:145136

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Wu Y, Xu X et al (2018) Degradation properties of petroleum degrading bacteria immobilized on modified corn straw in marine environment. Petrol Sci Technol 36:2043–2048

    Article  CAS  Google Scholar 

  • Yalcinkaya F, Boyraz E, Maryska J et al (2020) A review on membrane technology and chemical surface modification for the oily wastewater treatment. Materials 13:493

    Article  CAS  PubMed Central  Google Scholar 

  • Yan J, Yuan W, Liu J et al (2019) An integrated process of chemical precipitation and sulfate reduction for treatment of flue gas desulphurization wastewater from coal-fired power plant. J Cleaner Product 228:63–72. https://doi.org/10.1016/j.jclepro.2019.04.227

    Article  CAS  Google Scholar 

  • Yan J, Liu J, Ye WZ et al (2020) Enhanced organic compounds utilization and desalination of coal-fired power plant FGD wastewater by mixed bacterial sulphate reducing consortium. Biochem Eng J 159:107549

    Article  CAS  Google Scholar 

  • Yang W-J, Yuen ACY, Li A et al (2019) Recent progress in bio-based aerogel absorbents for oil/water separation. Cellulose 26:6449–6476

    Article  CAS  Google Scholar 

  • Yu L, Han M, He F (2017) A review of treating oily wastewater. Arab J Chem 10:S1913–S1922

    Article  CAS  Google Scholar 

  • Zhang W, Ren X, He J et al (2019) Application of natural mixed bacteria immobilized carriers to different kinds of organic wastewater treatment and microbial community comparison. J Hazardous Mater 377:113–123. https://doi.org/10.1016/j.jhazmat.2019.05.068

    Article  CAS  Google Scholar 

  • Zhang C, Li J, Wu X et al (2020a) Rapid degradation of dimethomorph in polluted water and soil by Bacillus cereus WL08 immobilized on bamboo charcoal-sodium alginate. J Hazard Mater 398:122806

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Gao H, Xue Q (2020b) Potential applications of microbial enhanced oil recovery to heavy oil. Crit Rev Biotechnol 40:459–474

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Wang X, Peng S et al (2020c) Degradation of petroleum hydrocarbons by embedding immobilized crude oil degrading bacteria. Water Sci Technol 82:2296–2303

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Lan Y, Pan J et al (2021) Polyphenol-engineered superwetting membranes with wrinkled microspherical organizations for high-efficient oil/water separation. J Membrane Sci 640:119813

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 21966028), 2021 Key Talent Project of Gansu, Science and Technology Project of Gansu (Grant No. 21YF5GA062; 21JR11RA017), Science and Technology Project of Lanzhou (Grant No. 2021-1-138), the Natural Science Youth Foundation of Gansu Province, China (Grant No. 21JR1RA215) the Fundamental Research Funds for the Central Universities (Grant No. 31920210139; 31920210062).

Author information

Authors and Affiliations

Authors

Contributions

KX: Methodology, Investigation, Data curation, Writing—original draft. QH: Supervision, Writing – review & editing, Resources, Funding acquisition. XM: Methodology, Writing—review & editing. CX: Methodology, Investigation, Data curation. YZ: Writing—review & editing. XJ: Writing—review & editing. JX: Writing—review & editing. LC: Conceptualization, Methodology, Supervision, Writing – review & editing, Resources, Funding acquisition AL: Conceptualization, Methodology, Resources, Supervision.

Corresponding authors

Correspondence to Lihua Chen or An Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Hasi, Q., Mu, X. et al. Lipophilic, nanocellulose based macroporous sponge loaded with mixed microorganisms for efficient elimination of petroleum hydrocarbon pollution in water. Cellulose 29, 6161–6179 (2022). https://doi.org/10.1007/s10570-022-04653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-022-04653-z

Keywords

Navigation