Skip to main content
Log in

Cellulose nanocrystals from lignocellulosic feedstock: a review of production technology and surface chemistry modification

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Fossil fuel substitutes are being developed to combat the ecological impact and rapid exhaustion of petroleum-based products. Being the most abundant polymer on Earth, cellulose-based products are renewable and sustainable. Cellulose nanocrystals (CNCs) are derived from cellulosic-based materials, have good physicochemical properties, and can be used to produce numerous products. CNC synthesis and their applications have been extensively studied; however, they remain limited to laboratory-scale as several challenges hinder its commercial-scale production. Herein, the suitability of nanocrystalline isolation methods, including chemical, enzymatic, ionic liquids, and deep eutectic solvents, for mass production is evaluated. Poor re-dispersion of CNCs is a major challenge that hinders its utilization in many applications. Hence, surface chemistry modification of CNCs have also been reviewed. It has been concluded that the CNC isolation method and surface modification technique significantly impacts its cost, morphology, and physicochemical properties. This review paper presents the challenges often faced in the conversion of bench-scale studies into commercial production of nanocrystalline cellulose. Hence, this paper gives all the necessary information on the important aspects of raw material selection, nanocellulose isolation process selection, and suitable surface modification method together in a single review article. Readers will be able to identify the possible research gaps for future research studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abol-Fotouh D, Hassan MA, Shokry H, Roig A, Azab MS, Kashyout AE-HB (2020) Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Sci Rep-Uk 10:1–14

    Google Scholar 

  • Abu-Jdayil B, Hittini W, Mourad A-H (2019) Development of date pit–polystyrene thermoplastic heat insulator material: physical and thermal properties. Int J Polym Sci 2019(1–10):1697627

    Google Scholar 

  • Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohyd Polym 134:609–616

    CAS  Google Scholar 

  • Abu-Thabit NY, Judeh AA, Hakeem AS, Ul-Hamid A, Umar Y, Ahmad A (2020) Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.). Int J Biol Macromol 155:730–739

    CAS  PubMed  Google Scholar 

  • Adil SF, Bhat VS, Batoo KM, Imran A, Assal ME, Madhusudhan B, Khan M, Al-Warthan A (2020) Isolation and characterization of cellulose nanocrystallsfrom flaxseed Hull: a future onco-drug delivery agent. J Saudi Chem Soc 24:374–379

    Google Scholar 

  • Ahmed-Haras MR, Kao N, Ward L (2020) Single-step heterogeneous catalysis production of highly monodisperse spherical nanocrystalline cellulose. Int J Biol Macromol 154:246–255

    CAS  PubMed  Google Scholar 

  • Akinjokun AI, Petrik LF, Ogunfowokan AO, Ajao J, Ojumu TV (2021) Isolation and characterization of cellulose nanocrystallsfrom cocoa pod husk (CPH) biomass wastes. Heliyon 7:e06680

    PubMed  PubMed Central  Google Scholar 

  • Alayoubi R, Mehmood N, Husson E, Kouzayha A, Tabcheh M, Chaveriat L, Sarazin C, Gosselin I (2020) Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield. Renew Energ 145:1808–1816

    CAS  Google Scholar 

  • Alothman OY, Kian LK, Saba N, Jawaid M, Khiari R (2021) Cellulose nanocrystal extracted from date palm fibre: morphological, structural and thermal properties. Ind Crop Prod 159:113075

    CAS  Google Scholar 

  • Alrumman SA (2016) Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Braz J Microbiol 47:110–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anton-Sales I, Roig-Sanchez S, Sánchez-Guisado MJ, Laromaine A, Roig A (2020) Bacterial nanocellulose and titania hybrids: cytocompatible and cryopreservable cell carriers. Acs Biomater Sci Eng 6:4893–4902

    CAS  PubMed  Google Scholar 

  • Anwar B, Bundjali B, Sunarya Y, Arcana I (2021) Properties of bacterial cellulose and its nanocrystalline obtained from pineapple peel waste juice. Fiber Polym 22:1228–1236

    CAS  Google Scholar 

  • Arnata IW, Suprihatin S, Fahma F, Richana N, Sunarti TC (2020) Cationic modification of cellulose nanocrystallsfrom sago fronds. Cellulose 27:3121–3141

    CAS  Google Scholar 

  • Bagis FH, Setiadi (2020) Nanocellulose filament fabrication from Sugarcane Bagasse through wet spinning method. Aip Conf Proc, 2020. AIP Publishing LLC, 040005

  • Banerjee M, Saraswatula S, Williams A, Brettmann B (2020) Effect of purification methods on commercially available cellulose nanocrystal properties and TEMPO oxidation. Processes 8:698

    CAS  Google Scholar 

  • Baruah J, Deka RC, Kalita E (2020) Greener production of microcrystalline cellulose (MCC) from Saccharum spontaneum (Kans grass): statistical optimization. Int J Biol Macromol 154:672–682

    CAS  PubMed  Google Scholar 

  • Bauli CR, Lima GF, de Souza AG, Ferreira RR, Rosa DS (2021) Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing. Colloid Surface A 623:126771

    CAS  Google Scholar 

  • Bayer T, Cunning BV, Selyanchyn R, Nishihara M, Fujikawa S, Sasaki K, Lyth SM (2016) High temperature proton conduction in nanocellulose membranes: paper fuel cells. Chem Mater 28:4805–4814

    CAS  Google Scholar 

  • Behera PK, Mondal P, Singha NK (2018) Self-Healable and ultrahydrophobic polyurethane-POSS hybrids by diels-alder “click” reaction: a new class of coating material. Macromolecules 51:4770–4781

    CAS  Google Scholar 

  • Beltramino F, Blanca Roncero M, Vidal T, Valls C (2018) A novel enzymatic approach to cellulose nanocrystallspreparation. Carbohyd Polym 189:39–47

    CAS  Google Scholar 

  • Beroual M, Boumaza L, Mehelli O, Trache D, Tarchoun AF, Khimeche K (2021) Physicochemical properties and thermal stability of microcrystalline cellulose isolated from esparto grass using different delignification approaches. J Polym Environ 29:130–142

    CAS  Google Scholar 

  • Božič M, Liu P, Mathew AP, Kokol V (2014) Enzymatic phosphorylation of cellulose nanofibers to new highly-ions adsorbing, flame-retardant and hydroxyapatite-growth induced natural nanoparticles. Cellulose 21:2713–2726

    Google Scholar 

  • Camacho M, Ureña YRC, Lopretti M, Carballo LB, Moreno G, Alfaro B, Baudrit JRV (2017) Synthesis and characterization of cellulose nanocrystallsderived from pineapple peel residues. J Renew Mater 5:271–279

    CAS  Google Scholar 

  • Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14:1223–1230

    CAS  PubMed  Google Scholar 

  • Camarero-Espinosa S, Endes C, Mueller S, Petri-Fink A, Rothen-Rutishauser B, Weder C, Clift MJD, Foster EJ (2016) Elucidating the potential biological impact of cellulose nanocrystals. Fibers 4:21

    Google Scholar 

  • Cetin NS, Tingaut P, Özmen N, Henry N, Harper D, Dadmun M, Sebe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9:997–1003

    CAS  PubMed  Google Scholar 

  • Chawla L, Keena K, Pevec I, Stanley E (2014) Green schoolyards as havens from stress and resources for resilience in childhood and adolescence. Health Place 28:1–13

    PubMed  Google Scholar 

  • Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843

    CAS  Google Scholar 

  • Chen Q, Shi Y, Chen G, Cai M (2020) Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/CNC (nanocellulose) as strength agent. Int J Biol Macromol 142:846–854

    CAS  PubMed  Google Scholar 

  • Chowdhury ZZ, Chandran RRR, Jahan A, Khalid K, Rahman MM, Al-Amin M, Akbarzadeh O, Badruddin IA, Khan TMY, Kamangar S, Hamizi NAB, Wahab YA, Johan RB, Adebisi GA (2019) Extraction of cellulose nano-whiskers using ionic liquid-assisted ultra-sonication: optimization and mathematical modelling using box-Behnken design. Symmetry 11:1148

    CAS  Google Scholar 

  • Ciftci GC, Larsson PA, Riazanova AV, Øvrebø HH, Wågberg L, Berglund LA (2020) Tailoring of rheological properties and structural polydispersity effects in microfibrillated cellulose suspensions. Cellulose 27:9227–9241

    Google Scholar 

  • Collazo-Bigliardi S, Ortega-Toro R, Boix AC (2018) Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohyd Polym 191:205–215

    CAS  Google Scholar 

  • Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, Larese FF (2009) Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occ Env Hea 82:1043–1055

    CAS  Google Scholar 

  • Cui S, Zhang S, Ge S, Xiong L, Sun Q (2016) Green preparation and characterization of size-controlled cellulose nanocrystallsvia ultrasonic-assisted enzymatic hydrolysis. Ind Crop Prod 83:346–352

    CAS  Google Scholar 

  • Dai H, Chen Y, Ma L, Zhang Y, Cui B (2021) Direct regeneration of hydrogels based on lemon peel and its isolated microcrystalline cellulose: characterization and application for methylene blue adsorption. Int J Biol Macromol 191:129–138

    CAS  PubMed  Google Scholar 

  • de Amorim JDP, de Souza KC, Duarte CR, da SilvaDuarte I, Ribeiro FDAS, Silva GS, de Farias PMA, Stingl A, Costa AFS, Vinhas GM (2020) Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ Chem Lett 18:851–869

    Google Scholar 

  • Ditzel FI, Prestes E, Carvalho BM, Demiate IM, Pinheiro LA (2017) Cellulose nanocrystallsextracted from pine wood and corncob. Carbohyd Polym 157:1577–1585

    CAS  Google Scholar 

  • Dong S, Hirani AA, Colacino KR, Lee YW, Roman M (2012) Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano Life 2:1241006

    Google Scholar 

  • Dong Y, Tong D, Ren L, Chen X, Zhang H, Yu W, Zhou C (2021) Enhanced hydrolysis of cellulose to reducing sugars on kaolinte clay activated by mineral acid. Catal Lett, pp 1–10

  • Donini ÍA, de Salvi DT, Fukumoto FK, Lustri WR, Barud HS, Marchetto R, Messaddeq Y, Ribeiro SJ (2010) Biossíntese e recentes avanços na produção de celulose bacteriana. Eclet Quim 35:165–178

    Google Scholar 

  • Du H, Liu C, Mu X, Gong W, Lv D, Hong Y, Si C, Li B (2016) Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 23:2389–2407

    CAS  Google Scholar 

  • Dufresne A (2019) Nanocellulose processing properties and potential applications. Curr For Rep 5:76–89

    Google Scholar 

  • Dufresne A (2017) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter GmbH & Co KG, Berlin

    Google Scholar 

  • Dungani R, Owolabi AF, Saurabh CK, Abdul Khalil HPS, Tahir PM, Hazwan CICM, Ajijolakewu KA, Masri MM, Rosamah E, Aditiawati P (2016) Preparation and fundamental characterization of cellulose nanocrystal from oil palm fronds biomass. J Polym Environ 25:692–700

    Google Scholar 

  • Endes C, Mueller S, Kinnear C, Vanhecke D, Foster EJ, Petri-Fink A, Weder C, Clift MJ, Rothen-Rutishauser B (2015) Fate of cellulose nanocrystal aerosols deposited on the lung cell surface in vitro. Biomacromol 16:1267–1275

    CAS  Google Scholar 

  • Espino E, Cakir M, Domenek S, Román-Gutiérrez AD, Belgacem N, Bras J (2014) Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Ind Crop Prod 62:552–559

    CAS  Google Scholar 

  • Espino-Pérez E, Domenek S, Belgacem N, Sillard C, Bras J (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromol 15:4551–4560

    Google Scholar 

  • Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779

    CAS  PubMed  Google Scholar 

  • Fang R, Dhakshinamoorthy A, Li Y, Garcia H (2020) Metal organic frameworks for biomass conversion. Chem Soc Rev 49:3638–3687

    CAS  PubMed  Google Scholar 

  • Fattahi Meyabadi T, Dadashian F, Mir Mohamad Sadeghi G, Ebrahimi Zanjani Asl H (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol 261:232–240

    CAS  Google Scholar 

  • Filpponen I, Argyropoulos DS (2010) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromol 11:1060–1066

    CAS  Google Scholar 

  • Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJ, Cranston ED, Eichhorn SJ (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679

    CAS  PubMed  Google Scholar 

  • Francisco M, van den Bruinhorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14:2153–2157

    CAS  Google Scholar 

  • Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohyd Polym 92:1432–1442

    CAS  Google Scholar 

  • Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromol 13:2188–2194

    CAS  Google Scholar 

  • Galiwango E, Al-Marzouqi AH, Abu-Omar MM, Khaleel AA, Rahman NA (2017) Estimating combustion kinetics of UAE date palm tree biomass using thermogravimetric analysis. J Nat Sci Res 7:106–120

    Google Scholar 

  • Gan PG, Sam ST, Bin Abdullah MF, Bin Zulkepli NN, Yeong YF (2017) Characterization of Cellulose nanocrystallsIsolated from Empty Fruit Bunch Using Acid Hydrolysis. Solid State Phenom 264:9–12

    Google Scholar 

  • García A, Alriols MG, Labidi J (2014) Evaluation of different lignocellulosic raw materials as potential alternative feedstocks in biorefinery processes. Ind Crop Prod 53:102–110

    Google Scholar 

  • García G, Aparicio S, Ullah R, Atilhan M (2015) Deep eutectic solvents: physicochemical properties and gas separation applications. Energ Fuel 29:2616–2644

    Google Scholar 

  • Le Gars M, Delvart A, Roger P, Belgacem MN, Bras J (2020) Amidation of TEMPO-oxidized cellulose nanocrystals using aromatic aminated molecules. Colloid Polym Sci 298:603–617

    Google Scholar 

  • Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol 16:3399–3410

    CAS  Google Scholar 

  • Grząbka-Zasadzińska A, Skrzypczak A, Borysiak S (2019) The influence of the cation type of ionic liquid on the production of cellulose nanocrystallsand mechanical properties of chitosan-based biocomposites. Cellulose 26:4827–4840

    Google Scholar 

  • Guo R, Zhang L, Lu Y, Zhang X, Yang D (2020) Research progress of nanocellulose for electrochemical energy storage: a review. J Energy Chem 51:342–361

    Google Scholar 

  • Gupta RD, Raghav N (2020) Nano-crystalline cellulose: Preparation, modification and usage as sustained release drug delivery excipient for some non-steroidal anti-inflammatory drugs. Int J Biol Macromol 147:921–930

    CAS  PubMed  Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687

    CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    CAS  PubMed  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542

    CAS  PubMed  Google Scholar 

  • Hachaichi A, Kouini B, Kian LK, Asim M, Fouad H, Jawaid M, Sain M (2021) Cellulose nanocrystallsfrom microcrystalline cellulose of date palm fibers as a promising candidate for bio-nanocomposites: isolation and characterization. Materials 14:5313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haerunnisa A, Ramadhan D, Putra H, Afiifah N, Devita R, Rahayu S, Nandiyanto A (2020) Synthesis of crystalline nanocellulose by various methods. Arab J Chem Environ Res 7:94–125

    CAS  Google Scholar 

  • Hai LV (2015) Nanocellulose from different cellulose sources and theirall- cellulose composite properties. PhD, Chungnam National University

  • Haldar D, Sen D, Gayen K (2016) A review on the production of fermentable sugars from lignocellulosic biomass through conventional and enzymatic route—a comparison. Int J Green Energy 13:1232–1253

    CAS  Google Scholar 

  • Haldar D, Gayen K, Sen D (2018) Enumeration of monosugars’ inhibition characteristics on the kinetics of enzymatic hydrolysis of cellulose. Process Biochem 72:130–136

    CAS  Google Scholar 

  • Haldar D, Purkait MK (2020) Micro and cellulose nanocrystalls derivatives of lignocellulosic biomass: a review on synthesis, applications and advancements. Carbohyd Polym 250:116937

    CAS  Google Scholar 

  • Hamed SAAKM, Hassan ML (2019) A new mixture of hydroxypropyl cellulose and nanocellulose for wood consolidation. J Cult Herit 35:140–144

    Google Scholar 

  • Harini K, Mohan CC (2020) Isolation and characterization of micro and cellulose nanocrystallsfibers from the walnut shell, corncob and sugarcane bagasse. Int J Biol Macromol 163:1375–1383

    CAS  PubMed  Google Scholar 

  • Hastuti N, Kanomata K, Kitaoka T (2018) Hydrochloric acid hydrolysis of pulps from oil palm empty fruit bunches to produce cellulose nanocrystals. J Polym Environ 26:3698–3709

    CAS  Google Scholar 

  • Hernandez C, Ferreira F, Rosa D (2018) X-ray powder diffraction and other analyses of cellulose nanocrystals obtained from corn straw by chemical treatments. Carbohyd Polym 193:39–44

    CAS  Google Scholar 

  • Hittini W, Abu-Jdayil B, Mourad A-H (2019) Development of date pit–polystyrene thermoplastic heat insulator material: mechanical properties. J Thermoplast Compos 34:472–489

    Google Scholar 

  • Hongrattanavichit I, Aht-Ong D (2020) Nanofibrillation and characterization of sugarcane bagasse agro-waste using water-based steam explosion and high-pressure homogenization. J Clean Prod 277:123471

    CAS  Google Scholar 

  • Hu S, Jiang F, Hsieh Y-L (2015) 1D lignin-based solid acid catalysts for cellulose hydrolysis to glucose and nanocellulose. Acs Sustain Chem Eng 3:2566–2574

    CAS  Google Scholar 

  • Huang J, Hou S, Chen R (2019) Ionic liquid-assisted fabrication of nanocellulose from cotton linter by high pressure homogenization. Bioresources 14:7805–7820

    CAS  Google Scholar 

  • Hussin MH, Pohan NA, Garba ZN, Kassim MJ, Rahim AA, Brosse N, Yemloul M, Fazita MN, Haafiz MM (2016) Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents. Int J Biol Macromol 92:11–19

    CAS  PubMed  Google Scholar 

  • Ilyas R, Sapuan S, Ishak M, Zainudin E (2017) Effect of delignification on the physical, thermal, chemical, and structural properties of sugar palm fibre. BioResources 12:8734–8754

    CAS  Google Scholar 

  • Ilyas R, Sapuan S, Ishak M (2018a) Isolation and characterization of cellulose nanocrystallsfrom sugar palm fibres (Arenga Pinnata). Carbohyd Polym 181:1038–1051

    CAS  Google Scholar 

  • Ilyas R, Sapuan S, Atikah M, Asyraf M, Rafiqah SA, Aisyah H, Nurazzi NM, Norrrahim M (2021) Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm cellulose nanocrystalls(Arenga pinnata (Wurmb.) Merr). Text Res J 91:152–167

    CAS  Google Scholar 

  • Inayat A, Raza M (2019) District cooling system via renewable energy sources: a review. Renew Sust Energ Rev 107:360–373

    Google Scholar 

  • Inayat A, Jamil F, Raza M, Khurram S, Ghenai C, Al-Muhatseb AAH (2019) Upgradation of waste cooking oil to biodiesel in the presence of green catalyst derived from date seeds. Biofuels 12:1–6

    Google Scholar 

  • Inayat A, Ang HH, Raza M, Yousef BAA, Ghenai C, Ayoub M, Gilani SIUH (2020a) Integration and simulation of solar energy with hot flue gas system for the district cooling application. Case Stud Therm Eng 19:100620

    Google Scholar 

  • Inayat A, Inayat M, Shahbaz M, Sulaiman SA, Raza M, Yusup S (2020b) Parametric analysis and optimization for the catalytic air gasification of palm kernel shell using coal bottom ash as catalyst. Renew Energ 145:671–681

    CAS  Google Scholar 

  • Inayat A, Raza M, Khan Z, Ghenai C, Aslam M, Shahbaz M, Ayoub M (2020c) Flowsheet modeling and simulation of biomass steam gasification for hydrogen production. Chem Eng Technol 43:649–660

    CAS  Google Scholar 

  • Iskak NAM, Julkapli NM, Hamid SBA (2017) Understanding the effect of synthesis parameters on the catalytic ionic liquid hydrolysis process of cellulose nanocrystals. Cellulose 24:2469–2481

    CAS  Google Scholar 

  • Islam MS, Kao N, Bhattacharya SN, Gupta R, Bhattacharjee PK (2017) Effect of low pressure alkaline delignification process on the production of cellulose nanocrystallsfrom rice husk. J Taiwan Inst Chem E 80:820–834

    CAS  Google Scholar 

  • Islam MS, Kao N, Bhattacharya SN, Gupta R, Choi HJ (2018) Potential aspect of rice husk biomass in Australia for cellulose nanocrystallsproduction. Chinese J Chem Eng 26:465–476

    CAS  Google Scholar 

  • Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of cellulose nanocrystallsfor the binding and controlled release of drugs. Int J Nanomed 6:321

    CAS  Google Scholar 

  • Jia W, Liu Y (2019) Two characteristic cellulose nanocrystals (CNCs) obtained from oxalic acid and sulfuric acid processing. Cellulose 26:8351–8365

    CAS  Google Scholar 

  • Jiang J, Carrillo-Enriquez NC, Oguzlu H, Han X, Bi R, Saddler JN, Sun RC, Jiang F (2020) Acidic deep eutectic solvent assisted isolation of lignin containing nanocellulose from thermomechanical pulp. Carbohyd Polym 247:116727

    CAS  Google Scholar 

  • Ju Y, Ha J, Song Y, Lee D (2021) Revealing the enhanced structural recovery and gelation mechanisms of cation-induced cellulose nanofibrils composite hydrogels. Carbohyd Polym 272:118515

    CAS  Google Scholar 

  • Kasiri N, Fathi M (2018) Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int J Biol Macromol 106:1023–1031

    CAS  PubMed  Google Scholar 

  • Kaur R, Kaur P (2021) Chemical valorization of cellulose from lignocellulosic biomass: a step towards sustainable development. Cellul Chem Technol 55:207–222

    CAS  Google Scholar 

  • Khalid MY, Al Rashid A, Arif ZU, Ahmed W, Arshad H (2021) Recent advances in nanocellulose-based different biomaterials: types, properties, and emerging applications. J Mater Res Technol 14:2601–2623

    CAS  Google Scholar 

  • Khan A, Jawaid M, Kian LK, Khan AAP, Asiri AM (2021) Isolation and production of cellulose nanocrystallsfrom conocarpus fiber. Polymers 13:1835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khanjanzadeh H, Behrooz R, Bahramifar N, Gindl-Altmutter W, Bacher M, Edler M, Griesser T (2018) Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Int J Biol Macromol 106:1288–1296

    CAS  PubMed  Google Scholar 

  • Kian LK, Jawaid M, Ariffin H, Karim Z (2018) Isolation and characterization of cellulose nanocrystallsfrom roselle-derived microcrystalline cellulose. Int J Biol Macromol 114:54–63

    CAS  PubMed  Google Scholar 

  • Kian L, Saba N, Jawaid M, Alothman O, Fouad H (2020) Properties and characteristics of cellulose nanocrystallsisolated from olive fiber. Carbohyd Polym 241:116423

    CAS  Google Scholar 

  • Kian LK, Saba N, Jawaid M, Alothman OY, Fouad H (2020) Properties and characteristics of cellulose nanocrystallsisolated from olive fiber. Carbohyd Polym 241:116423

    CAS  Google Scholar 

  • Kumar AK, Parikh BS, Pravakar M (2016) Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut R 23:9265–9275

    CAS  Google Scholar 

  • Kusmono K, Akbar DA (2020) Influence of hydrolysis conditions on characteristics of cellulose nanocrystalls extracted from ramie fibers by hydrochloric acid hydrolysis. Res Square 1:1–22

    Google Scholar 

  • Kuznetsov B, Sudakova I, Garyntseva N, Tarabanko V, Yatsenkova O, Djakovitch L, Rataboul F (2021) Processes of catalytic oxidation for the production of chemicals from softwood biomass. Catal Today 375:132–144

    CAS  Google Scholar 

  • Lee H, Hamid SBA, Zain S (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014:1–20

    Google Scholar 

  • Leppänen I, Lappalainen T, Lohtander T, Jonkergouw C, Arola S, Tammelin T (2021) Capturing the colloidal microplastics with plant-based nanocellulose networks. Research square

  • Lewandowski WM, Ryms M, Kosakowski W (2020) Thermal biomass conversion: a review. Processes 8:516

    CAS  Google Scholar 

  • Li VC-F, Dunn CK, Zhang Z, Deng Y, Qi HJ (2017) Direct ink write (DIW) 3D printed cellulose nanocrystal aerogel structures. Sci Rep-Uk 7:1–8

    Google Scholar 

  • Li J, Zhang W, Monteiro PJ (2020) Structure and intrinsic mechanical properties of nanocrystalline calcium silicate hydrate. Acs Sustain Chem Eng 8:12453–12461

    CAS  Google Scholar 

  • Li S, Chen G (2020) Agricultural waste-derived superabsorbent hydrogels: preparation, performance, and socioeconomic impacts. J Clean Prod 251:119669

    CAS  Google Scholar 

  • Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393

    CAS  PubMed  Google Scholar 

  • Lindh EL, Bergenstråhle-Wohlert M, Terenzi C, Salmén L, Furó I (2016) Non-exchanging hydroxyl groups on the surface of cellulose fibrils: the role of interaction with water. Carbohyd Res 434:136–142

    CAS  Google Scholar 

  • Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    CAS  Google Scholar 

  • Listyanda RF, Kusmono Wildan MW, Ilman MN (2020) Extraction and characterization of cellulose nanocrystalls (CNC) from ramie fiber by sulphuric acid hydrolysis, vol 2217. AIP Publishing LLC, p 030069

    Google Scholar 

  • Liu YNY, Lu X, Zhang X, He H, Pan F, Zhou L, Liu X, Ji X, Zhang S (2019) Cascade utilization of lignocellulosic biomass to high-value products. Green Chem 21(13):3499–3535

    CAS  Google Scholar 

  • Liu Y, Wang H, Yu G, Yu Q, Li B, Mu X (2014) A novel approach for the preparation of cellulose nanocrystallsby using phosphotungstic acid. Carbohyd Polym 110:415–422

    CAS  Google Scholar 

  • Liu C, Li B, Du H, Lv D, Zhang Y, Yu G, Mu X, Peng H (2016) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohyd Polym 151:716–724

    CAS  Google Scholar 

  • Liu S, Zhang Q, Gou S, Zhang L, Wang Z (2020) Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers. Carbohyd Polym 251:117018

    Google Scholar 

  • Lu P, Hsieh Y-L (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohyd Polym 87:564–573

    CAS  Google Scholar 

  • Lu J, Sun C, Yang K, Wang K, Jiang Y, Tusiime R, Yang Y, Fan F, Sun Z, Liu Y (2019) Properties of polylactic acid reinforced by hydroxyapatite modified nanocellulose. Polymers 11:1009

    PubMed Central  Google Scholar 

  • Lynam JG, Kumar N, Wong MJ (2017a) Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresource Technol 238:684–689

    CAS  Google Scholar 

  • Lynam JG, Kumar N, Wong MJ (2017b) Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresource Technol 238:684–689

    CAS  Google Scholar 

  • Ma Y, Xia Q, Liu Y, Chen W, Liu S, Wang Q, Liu Y, Li J, Yu H (2019) Production of nanocellulose using hydrated deep eutectic solvent combined with ultrasonic treatment. Acs Omega 15:8539–8547

    Google Scholar 

  • Macias-Almazan A, Lois-Correa JA, Dominguez-Crespo MA, Lopez-Oyama AB, Torres-Huerta AM, Brachetti-Sibaja SB, Rodriguez-Salazar AE (2020) Influence of operating conditions on proton conductivity of nanocellulose films using two agroindustrial wastes: sugarcane bagasse and pinewood sawdust. Carbohyd Polym 238:116171

    CAS  Google Scholar 

  • Malav LC, Yadav KK, Gupta N, Kumar S, Sharma GK, Krishnan S, Rezania S, Kamyab H, Pham QB, Yadav S (2020) A review on municipal solid waste as a renewable source for waste-to-energy project in India: current practices, challenges, and future opportunities. J Clean Prod 277:123227

    Google Scholar 

  • Man Z, Muhammad N, Sarwono A, Bustam MA, Vignesh Kumar M, Rafiq S (2011) Preparation of cellulose nanocrystals using an ionic liquid. J Polym Environ 19:726–731

    CAS  Google Scholar 

  • Manikkam V (2018) Nanocellulose: nano in size, tremendous in strength and endless in applications: https://www.prescouter.com/2018/01/nanocellulose-applications/ [Online]. [Accessed]

  • MARMUR, A. (2012) Hydro-hygro-oleo-omni-phobic? Terminology of wettability classification. Soft Matter 8:6867–6870

    Google Scholar 

  • Martínez-Sanz M, Lopez-Rubio A, Villano M, Oliveira CS, Majone M, Reis M, Lagarón JM (2016) Production of bacterial nanobiocomposites of polyhydroxyalkanoates derived from waste and bacterial nanocellulose by the electrospinning enabling melt compounding method. J Appl Polym Sci 133(1–14):42486

    Google Scholar 

  • Martínez MAGL, Marlin N, Perez DDS, Dupont C, Rios CDMS, Meyer X-M, Gourdon C, Mortha G (2021) Impact of cellulose properties on its behavior in torrefaction: commercial microcrystalline cellulose versus cotton linters and celluloses extracted from woody and agricultural biomass. Cellulose 28:4761–4779

    Google Scholar 

  • Mehanny S, Abu-El Magd EE, Ibrahim M, Farag M, Gil-San-Millan R, Navarro J, El-Kashif E (2021) Extraction and characterization of nanocellulose from three types of palm residues. J Mater Res Technol 10:526–537

    CAS  Google Scholar 

  • Mishra S, Kharkar PS, Pethe AM (2019) Biomass and waste materials as potential sources of nanocrystalline cellulose: Comparative review of preparation methods (2016–Till date). Carbohyd Polym 207:418–427

    CAS  Google Scholar 

  • Moharrami P, Motamedi E (2020) Application of cellulose nanocrystals prepared from agricultural wastes for synthesis of starch-based hydrogel nanocomposites: efficient and selective nanoadsorbent for removal of cationic dyes from water. Bioresource Technol 313:123661

    CAS  Google Scholar 

  • Molina-Ramírez C, Cañas-Gutiérrez A, Castro C, Zuluaga R, Gañán P (2020) Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium. Carbohyd Polym 240:116341

    Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    CAS  PubMed  Google Scholar 

  • Morais JPS, de Freitas Rosa M, Nascimento LD, do Nascimento DM, Cassales AR (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohyd Polym 91:229–235

    CAS  Google Scholar 

  • Naderi A, Lindström T, Flodberg G, Sundström J, Junel K, Runebjörk A, Weise CF, Erlandsson J (2016a) Phosphorylated nanofibrillated cellulose: production and properties. Nord Pulp Pap Res J 31:20–29

    CAS  Google Scholar 

  • Naderi A, Sundström J, Lindström T, Erlandsson J (2016b) Enhancing the properties of carboxymethylated nanofibrillated cellulose by inclusion of water in the pretreatment process. Nord Pulp Pap Res J 31:372–378

    CAS  Google Scholar 

  • Nasseri R, Deutschman C, Han L, Pope M, Tam K (2020) Cellulose nanocrystals in smart and stimuli-responsive materials: a review. Mater Today Adv 5:100055

    Google Scholar 

  • Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25

    CAS  Google Scholar 

  • Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. Acs Appl Mater Inter 7:19809–19815

    CAS  Google Scholar 

  • Neves RM, Ornaghi HL Jr, Zattera AJ, Amico SC (2020) Recent studies on modified cellulose/nanocellulose epoxy composites: a systematic review. Carbohyd Polym 255:117366

    Google Scholar 

  • Nie S, Hao N, Zhang K, Xing C, Wang S (2020) Cellulose nanofibrils-based thermally conductive composites for flexible electronics: a mini review. Cellulose 27:4173–4187

    CAS  Google Scholar 

  • Omran AAB, Mohammed AA, Sapuan S, Ilyas R, Asyraf M, Rahimian Koloor SS, Petrů M (2021) Micro-and nanocellulose in polymer composite materials: a review. Polymers 13:231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco CM, Bustos AC, Reyes G (2020) Cellulose nanocrystals from blueberry pruning residues isolated by ionic liquids and TEMPO-oxidation combined with mechanical disintegration. J Disper Sci Technol 41:1731–1741

    CAS  Google Scholar 

  • Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC (2014) Natural deep eutectic solvents – Solvents for the 21st century. Acs Sustain Chem Eng 2:1063–1071

    CAS  Google Scholar 

  • Panaitescu DM, Vizireanu S, Stoian SA, Nicolae C-A, Gabor AR, Damian CM, Trusca R, Carpen LG, Dinescu G (2020) Poly (3-hydroxybutyrate) modified by plasma and TEMPO-oxidized celluloses. Polymers 12:1510

    CAS  PubMed Central  Google Scholar 

  • Peng BL, Dhar N, Liu H, Tam K (2011) Chemistry and applications of cellulose nanocrystallsand its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206

    CAS  Google Scholar 

  • Pereira B, Arantes V (2020) Production of cellulose nanocrystals integrated into a biochemical sugar platform process via enzymatic hydrolysis at high solid loading. Ind Crop Prod 152:112377

    CAS  Google Scholar 

  • Perna FM, Vitale P, Capriati V (2020) Deep eutectic solvents and their applications as green solvents. Curr Opin Green 21:27–33

    Google Scholar 

  • Phanthong P, Karnjanakom S, Reubroycharoen P, Hao X, Abudula A, Guan G (2017) A facile one-step way for extraction of nanocellulose with high yield by ball milling with ionic liquid. Cellulose 24:2083–2093

    CAS  Google Scholar 

  • Phillips DM, Drummy LF, Conrady DG, Fox DM, Naik RR, Stone MO, Trulove PC, de Long HC, Mantz RA (2004) Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. J Am Chem Soc 126:14350–14351

    CAS  PubMed  Google Scholar 

  • Pourmand A, Abdollahi M (2012) Current opinion on nanotoxicology. Springer

    Google Scholar 

  • Prado KS, Spinace MAS (2019) Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Int J Biol Macromol 122:410–416

    CAS  PubMed  Google Scholar 

  • Qi H, Liebert T, Meister F, Heinze T (2009) Homogenous carboxymethylation of cellulose in the NaOH/urea aqueous solution. React Funct Polym 69:779–784

    CAS  Google Scholar 

  • Rajalaxmi D, Jiang N, Leslie G, Ragauskas AJ (2010) Synthesis of novel water-soluble sulfonated cellulose. Carbohyd Res 345:284–290

    CAS  Google Scholar 

  • Ramírez JAÁ, Fortunati E, Kenny JM, Torre L, Foresti ML (2017) Simple citric acid-catalyzed surface esterification of cellulose nanocrystals. Carbohyd Polym 157:1358–1364

    Google Scholar 

  • Rathnan RK, John D (2020) Isolation, screening, identification and optimized production of extracellular cellulase from Bacillus subtilis using cellulosic waste as carbon source. J Microbiol Biotechnol 9:2383–2386

    Google Scholar 

  • Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B, Rupani PF, Mohammadi AA (2020) Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 199:117457

    CAS  Google Scholar 

  • Rojas J, Bedoya M, Ciro Y (2015) Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. Cellul Fund Asp Curr Trends 8:193–228

    Google Scholar 

  • Rol F, Belgacem MN, Gandini A, Bras J (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264

    CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677

    CAS  Google Scholar 

  • Ruiz-Palomero C, Soriano ML, Valcárcel M (2015) β-Cyclodextrin decorated nanocellulose: a smart approach towards the selective fluorimetric determination of danofloxacin in milk samples. Analyst 140:3431–3438

    CAS  PubMed  Google Scholar 

  • Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355

    CAS  Google Scholar 

  • Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol Progr 21:816–822

    CAS  Google Scholar 

  • Saito T, Okita Y, Nge T, Sugiyama J, Isogai A (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohyd Polym 65:435–440

    CAS  Google Scholar 

  • Sanchez R, Espinosa E, Dominguez-Robles J, Loaiza JM, Rodriguez A (2016) Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. Int J Biol Macromol 92:1025–1033

    CAS  PubMed  Google Scholar 

  • Sankhla S, Sardar HH, Neogi S (2021) Greener extraction of highly crystalline and thermally stable cellulose micro-fibers from sugarcane bagasse for cellulose nano-fibrils preparation. Carbohyd Polym 251:117030

    CAS  Google Scholar 

  • Satlewal A, Agrawal R, Bhagia S, Sangoro J, Ragauskas AJ (2018) Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol Adv 36:2032–2050

    CAS  PubMed  Google Scholar 

  • Sèbe G, Ham-Pichavant FDR, Pecastaings G (2013) Dispersibility and emulsion-stabilizing effect of cellulose nanowhiskers esterified by vinyl acetate and vinyl cinnamate. Biomacromol 14:2937–2944

    Google Scholar 

  • Selulosa-Polivinilklorida SRN, Sheltami RM, Kargarzadeh H, Abdullah I (2015) Effects of silane surface treatment of cellulose nanocrystals on the tensile properties of cellulose-polyvinyl chloride nanocomposite. Sains Malays 44:801–810

    Google Scholar 

  • Shaikh HM, Anis A, Poulose AM, Al-Zahrani SM, Madhar NA, Alhamidi A, Alam MA (2021) Isolation and characterization of alpha and cellulose nanocrystallsfrom date palm (Phoenix dactylifera L.) trunk mesh. Polymers 13:1893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma C, Bhardwaj NK (2019) Bacterial nanocellulose: Present status, biomedical applications and future perspectives. Mat Sci Eng C-Mater 104:109963

    CAS  Google Scholar 

  • Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S (2019) Commercial application of cellulose nano-composites–A review. Biotechnol. Rep. 21:e00316

    Google Scholar 

  • Silvério HA, Flauzino Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crop Prod 44:427–436

    Google Scholar 

  • Sirviö JA (2019) Fabrication of regenerated cellulose nanoparticles by mechanical disintegration of cellulose after dissolution and regeneration from a deep eutectic solvent. J Mater Chem A 7:755–763

    Google Scholar 

  • Song Y, Jiang W, Zhang Y, Wang H, Zou F, Yu K, Han G (2018) A novel process of nanocellulose extraction from kenaf bast. Mater Res Express 5:085032

    Google Scholar 

  • Spinella S, Maiorana A, Qian Q, Dawson NJ, Hepworth V, McCallum SA, Ganesh M, Singer KD, Gross RA (2016) Concurrent cellulose hydrolysis and esterification to prepare a surface-modified cellulose nanocrystal decorated with carboxylic acid moieties. Acs Sustain Chem Eng 4:1538–1550

    CAS  Google Scholar 

  • Stephanie Beck-Candanedo MR, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    PubMed  Google Scholar 

  • Sucaldito MR, Camacho DH (2017) Characteristics of unique HBr-hydrolyzed cellulose nanocrystals from freshwater green algae (Cladophora rupestris) and its reinforcement in starch-based film. Carbohyd Polym 169:315–323

    CAS  Google Scholar 

  • Suflet DM, Chitanu GC, Popa VI (2006) Phosphorylation of polysaccharides: new results on synthesis and characterisation of phosphorylated cellulose. React Funct Polym 66:1240–1249

    CAS  Google Scholar 

  • Sukyai P, Anongjanya P, Bunyahwuthakul N, Kongsin K, Harnkarnsujarit N, Sukatta U, Sothornvit R, Chollakup R (2018) Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films. Food Res Int 107:528–535

    CAS  PubMed  Google Scholar 

  • Sun C, Ni J, Zhao C, Du J, Zhou C, Wang S, Xu C (2017) Preparation of a cellulosic adsorbent by functionalization with pyridone diacid for removal of Pb (II) and Co (II) from aqueous solutions. Cellulose 24:5615–5624

    CAS  Google Scholar 

  • Sunasee R, Carson M, Despres HW, Pacherille A, Nunez KD (2019) Ckless K (2019) Analysis of the immune and antioxidant response of cellulose nanocrystals grafted with β-cyclodextrin in myeloid cell lines. J Nanomater 2019(1–9):4751827. https://doi.org/10.1007/s10570-021-04371-y

    Article  Google Scholar 

  • Taflick T, Schwendler LA, Rosa SML, Bica CID, Nachtigall SMB (2017) Cellulose nanocrystals from acacia bark-Influence of solvent extraction. Int J Biol Macromol 101:553–561

    CAS  PubMed  Google Scholar 

  • Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020

    CAS  Google Scholar 

  • Tan XY, Abd Hamid SB, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenerg 81:584–591

    CAS  Google Scholar 

  • Tang LR, Huang B, Ou W, Chen XR, Chen YD (2011) Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Bioresource Technol 102:10973–10977

    CAS  Google Scholar 

  • Tao P, Zhang Y, Wu Z, Liao X, Nie S (2019) Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: transition of cellulose crystal structure. Carbohyd Polym 214:1–7

    CAS  Google Scholar 

  • TAPPI (2017) Standard terms and their definition for cellulose nanomaterial

  • Teo HL, Wahab RA (2020) Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: a review. Int J Biol Macromol 161:1414–1430

    CAS  PubMed  Google Scholar 

  • Thomas B, Raj MC, Joy J, Moores A, Drisko GL, Sanchez CM (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625

    CAS  PubMed  Google Scholar 

  • Torlopov MA, Mikhaylov VI, Udoratina EV, Aleshina LA, Prusskii AI, Tsvetkov NV, Krivoshapkin PV (2017a) Cellulose nanocrystals with different length-to-diameter ratios extracted from various plants using novel system acetic acid/phosphotungstic acid/octanol-1. Cellulose 25:1031–1046

    Google Scholar 

  • Torlopov MA, Udoratina EV, Martakov IS, Sitnikov PA (2017b) Cellulose nanocrystals prepared in H3PW12O40-acetic acid system. Cellulose 24:2153–2162

    CAS  Google Scholar 

  • Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MN, Taiwo OF, Hassan T, Haafiz MM (2016) Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. Int J Biol Macromol 93:789–804

    CAS  PubMed  Google Scholar 

  • Tu W-C, Weigand L, Hummel M, Sixta H, Brandt-Talbot A, Hallett JP (2020) Characterisation of cellulose pulps isolated from Miscanthus using a low-cost acidic ionic liquid. Cellulose 27:4745–4761

    CAS  Google Scholar 

  • Tuerxun D, Pulingam T, Nordin NI, Chen YW, Kamaldin JB, Julkapli NBM, Lee HV, Leo BF, Johan MRB (2019) Synthesis, characterization and cytotoxicity studies of cellulose nanocrystallsfrom the production waste of rubber-wood and kenaf-bast fibers. Eur Polym J 116:352–360

    CAS  Google Scholar 

  • Vanderfleet OM, Cranston ED (2020) Production routes to tailor the performance of cellulose nanocrystals. Nat Rev Mater 06:124–144

    Google Scholar 

  • Viet D, Beck-Candanedo S, Gray DG (2007) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14:109–113

    CAS  Google Scholar 

  • Vigier KDO, Chatel G, Jérôme F (2015) Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. ChemCatChem 7:1250–1260

    CAS  Google Scholar 

  • Vijayalakshmi K, Gomathi T, Latha S, Hajeeth T, Sudha P (2016) Removal of copper (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. Int J Biol Macromol 82:440–452

    CAS  PubMed  Google Scholar 

  • Vishwakarma V, Samal SS, Manoharan N (2010) Safety and risk associated with nanoparticles-a review. J Miner Mater Charact Eng 9:455–459

    Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    PubMed  Google Scholar 

  • Wang Y, Wei X, Li J, Wang F, Wang Q, Chen J, Kong L (2015) Study on nanocellulose by high pressure homogenization in homogeneous isolation. Fiber Polym 16:572–578

    Google Scholar 

  • Wang W, Liang T, Bai H, Dong W, Liu X (2018) All cellulose composites based on cellulose diacetate and nanofibrillated cellulose prepared by alkali treatment. Carbohyd Polym 179:297–304

    CAS  Google Scholar 

  • Wang Z, Yao Z, Zhou J, He M, Jiang Q, Li S, Ma Y, Liu M, Luo S (2019) Isolation and characterization of cellulose nanocrystals from pueraria root residue. Int J Biol Macromol 129:1081–1089

    CAS  PubMed  Google Scholar 

  • Wathsala K, Weerakkody K, Weragoda V (2021) Isolation and characterization of microcrystalline cellulose from rice straw. 2021 Moratuwa Engineering Research Conference (MERCon), 2021. IEEE, pp 670–675

  • Weerasooriya P, Abdul Khalil H, Kaus NM, Hossain MS, Hiziroglu S, Fazita MN, Gopakumar DA, Hafiiz MM (2020) Isolation and characterization of regenerated cellulose films using microcrystalline cellulose from oil palm empty fruit bunch with an ionic liquid. Bioresources 15:8268

    CAS  Google Scholar 

  • Willberg-Keyriläinen P, Hiltunen J, Ropponen J (2018) Production of cellulose carbamate using urea-based deep eutectic solvents. Cellulose 25:195–204

    Google Scholar 

  • Williams PT, Nugranad N (2000) Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy 25:493–513

    CAS  Google Scholar 

  • Xie H, Liu W, Zhao ZK (2012) Lignocellulose pretreatment by ionic liquids: a promising start point for bio-energy production. Biomass conversion (Chapter). Springer, pp 123–144

  • Xie H, Du H, Yang X, Si C (2018) Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci 2018:1–25

    Google Scholar 

  • Xie H, Zou Z, Du H, Zhang X, Wang X, Yang X, Wang H, Li G, Li L, Si C (2019) Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/Oxalic acid hydrolysis. Carbohyd Polym 223:115116

    CAS  Google Scholar 

  • Xu W, Grénman H, Liu J, Kronlund D, Li B, Backman P, Peltonen J, Willför S, Sundberg A, Xu C (2017) Mild oxalic-acid-catalyzed hydrolysis as a novel approach to prepare cellulose nanocrystals. ChemNanoMat 3:109–119

    CAS  Google Scholar 

  • Xu F-X, Zhang X, Zhang F, Jiang L-Q, Zhao Z-L, Li H-B (2020) TG-FTIR for kinetic evaluation and evolved gas analysis of cellulose with different structures. Fuel 268:117365

    CAS  Google Scholar 

  • Xue G, He Y, Li X, Zhang Z, Zhang Y, Xu G (2021) Ultrasound-assisted sulfuric acid hydrolysis method for preparation and characterization of nanocellulose from ginkgo nut shell. 食品工业科技 42:204–211

    Google Scholar 

  • Yetiş F, Liu X, Sampson WW, Gong RH (2020) Acetylation of lignin containing microfibrillated cellulose and its reinforcing effect for polylactic acid. Eur Polym J 134:109803

    Google Scholar 

  • Yi T, Zhao H, Mo Q, Pan D, Liu Y, Huang L, Xu H, Hu B, Song H (2020) From cellulose to cellulose nanofibrils—A comprehensive review of the preparation and modification of cellulose nanofibrils. Materials 13:5062

    CAS  PubMed Central  Google Scholar 

  • Yokota S, Tagawa S, Kondo T (2020) Facile surface modification of amphiphilic cellulose nanofibrils prepared by aqueous counter collision. Carbohyd Polym 255:117342

    Google Scholar 

  • Yu H-Y, Chen R, Chen G-Y, Liu L, Yang X-G, Yao J-M (2015) Silylation of cellulose nanocrystals and their reinforcement of commercial silicone rubber. J Nanopart Res 17:361

    Google Scholar 

  • Yu H-Y, Zhang D-Z, Lu F-F, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. Acs Sustain Chem Eng 4:2632–2643

    CAS  Google Scholar 

  • Yuan H, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromol 7:696–700

    CAS  Google Scholar 

  • Zaaba NF, Jaafar M, Ismail H (2021) Tensile and morphological properties of cellulose nanocrystallsand nanofibrillated cellulose reinforced PLA bionanocomposites: a review. Polym Eng Sci 61:22–38

    CAS  Google Scholar 

  • Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    CAS  PubMed  Google Scholar 

  • Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energ Convers Manage 51:969–982

    CAS  Google Scholar 

  • Zhang Y, Xue GX, Zhang XM, Zhao Y (2012) Enzymatic preparation of cellulose nanocrystallsfrom bamboo fibers. Adv Mat Res 441:754–758

    CAS  Google Scholar 

  • Zheng D, Zhang Y, Guo Y, Yue J (2019) Isolation and characterization of nanocellulose with a novel shape from walnut (Juglans Regia L.) shell agricultural waste. Polymers (Basel) 11:1130

    Google Scholar 

  • Zhou L, Ke K, Yang M-B, Yang W (2020) Recent progress on chemical modification of cellulose for high mechanical-performance Poly (lactic acid)/Cellulose composite: a short review. Compos Commun 23:100548

    Google Scholar 

  • Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374

    CAS  PubMed  Google Scholar 

  • Zianor Azrina ZA, Beg MDH, Rosli MY, Ramli R, Junadi N, Alam A (2017) Spherical cellulose nanocrystalls(CNC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis. Carbohyd Polym 162:115–120

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Water and Energy Center at the UAE University [grant numbers 31R272 and 12R014].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basim Abu-Jdayil.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

They confirm that the prepared manuscript was approved by all authors.

Consent for publication

The authors confirmed here that the submitted manuscript has not been published previously and it is not under consideration for publication elsewhere.

Human and animal rights

The authors have not used any animal studies or human participants' involvement in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, M., Abu-Jdayil, B. Cellulose nanocrystals from lignocellulosic feedstock: a review of production technology and surface chemistry modification. Cellulose 29, 685–722 (2022). https://doi.org/10.1007/s10570-021-04371-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04371-y

Keywords

Navigation