Skip to main content
Log in

Structure and properties of flax vs. lyocell fiber-reinforced polylactide stereocomplex composites

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A commonly used natural cellulose fiber (flax) and a regenerated cellulose fiber (Lyocell) were used at 20 wt% to reinforce polylactide stereocomplex (sc-PLA) composites. Composites were prepared by melt compounding cellulose fibers and an equivalent proportion of PLLA/PDLA, followed by injection molding. The structures and properties of these two kinds of cellulose fiber/sc-PLA composites were compared and evaluated. The results showed that the total crystallinity and stereocomplex crystallite content of composites could be increased by reinforcing with cellulose fibers, and Lyocell fibers were more effective in accelerating crystallinity and the formation of stereocomplex crystallites than flax fibers. Mechanical properties of Lyocell fibers were much poorer than those of flax fibers, and the interfacial adhesion values of Lyocell/sc-PLA composites were inferior to those of flax/sc-PLA composites. Lyocell/sc-PLA composites showed higher impact strength and similar tensile strength vs. flax/sc-PLA composites, but the Young’s modulus values of Lyocell/sc-PLA composites were lower than those of flax/sc-PLA composites. The Vicat softening temperatures of both flax/sc-PLA and Lyocell/sc-PLA composites were increased to nearly 100 °C higher than that of PLLA. Lyocell/sc-PLA composites showed the highest Vicat softening temperature of ~ 170 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arao Y, Fujiura T, Itani S, Tanaka T (2015) Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Compos Part B-Eng 68:200–206

    Article  CAS  Google Scholar 

  • Aydin M, Tozlu H, Kemaloglu S, Aytac A, Ozkoc G (2011) Effects of alkali treatment on the properties of short flax fiber–poly(lactic acid) eco-composites. J Polym Environ 19:11–17

    Article  CAS  Google Scholar 

  • Bax B, Müssig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68:1601–1607

    Article  CAS  Google Scholar 

  • Biagiotti J, Puglia D, Torre L, Kenny LT, Arbelaiz A, Cantero G, Marieta C, Llano-Ponte R, Mondragon I (2004) A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polym Composite 25:470–479

    Article  CAS  Google Scholar 

  • Brizzolara D, Cantow HJ, Diederichs K, Keller E, Domb AJ (1996) Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s. Macromolecules 29:191–197

    Article  CAS  Google Scholar 

  • Brochu S, Prud’homme RE, Barakat I, Jérôme R, (1995) Stereocomplexation and morphology of polylactides macromolecules. Macromolecules 28:5230–5239

    Article  CAS  Google Scholar 

  • Ganster J, Fink H-P (2006) Novel cellulose fibre reinforced thermoplastic materials. Cellulose 13:271–280

    Article  CAS  Google Scholar 

  • Ghosh S, Viana JC, Reis RL, Mano JF (2007) Effect of processing conditions on morphology and mechanical properties of injection-molded poly(l-lactic acid). Polym Eng Sci 47:1141–1147

    Article  CAS  Google Scholar 

  • Graupner N (2008) Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites. J Mater Sci 43:5222–5229

    Article  CAS  Google Scholar 

  • Graupner N, Herrmann AS, Müssig J (2009) Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos Part A-Appl S 40:810–821

    Article  CAS  Google Scholar 

  • Graupner N, Rößler J, Ziegmann G, Müssig J (2014) Fibre/matrix adhesion of cellulose fibres in PLA, PP and MAPP: a critical review of pull-out test, microbond test and single fibre fragmentation test results. Compos Part A-Appl S 63:133–148

    Article  CAS  Google Scholar 

  • Hu R, Lim JK (2007) Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J Compos Mater 41:1655–1669

    Article  CAS  Google Scholar 

  • Huda MS, Drzal LT, Misra M, Mohanty AK (2006) Wood-fiber-reinforced poly(lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102:4856–4869

    Article  CAS  Google Scholar 

  • Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68:424–432

    Article  CAS  Google Scholar 

  • Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906

    Article  CAS  Google Scholar 

  • Jiang X, Bai Y, Chen X, Liu W (2020) A review on raw materials, commercial production and properties of lyocell fiber. J Bioresour Bioprod 5:17–27

    Article  CAS  Google Scholar 

  • Jin F-L, Hu R-R, Park S-J (2019) Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: a review. Compos Part B-Eng 164:287–296

    Article  CAS  Google Scholar 

  • Li Y, Li Q, Yang G, Ming R, Yu M, Zhang H, Shao H (2018) Evaluation of thermal resistance and mechanical properties of injected molded stereocomplex of poly(l-lactic acid) and poly(d-lactic acid) with various molecular weights. Adv Polym Tech 37:1674–1681

    Article  CAS  Google Scholar 

  • Liu H, Zhang J (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci Pol Phys 49:1051–1083

    Article  CAS  Google Scholar 

  • Ma H, Joo CW (2011) Structure and mechanical properties of jute-polylactic acid biodegradable composites. J Compos Mater 45:1451–1460

    Article  CAS  Google Scholar 

  • Masirek R, Kulinski Z, Chionna D, Piorkowska E, Pracella M (2007) Composites of poly(L-actide) with hemp fibers: morphology and thermal and mechanical properties. J Appl Polym Sci 105:255–268

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K, Sain M (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101:300–310

    Article  CAS  Google Scholar 

  • Ming R, Yang G, Li Y, Wang R, Zhang H, Shao H (2017) Flax fiber-reinforced polylactide stereocomplex composites with enhanced heat resistance and mechanical properties. Polym Composite 38:472–478

    Article  CAS  Google Scholar 

  • Mokhena TC, Sefadi JS, Sadiku ER, John MJ, Mochane MJ, Mtibe A (2018) Thermoplastic processing of PLA/cellulose nanomaterials composites. Polymers 10:1363

    Article  PubMed Central  CAS  Google Scholar 

  • Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234

    Article  CAS  Google Scholar 

  • Nassiopoulos E, Njuguna J (2015) Thermo-mechanical performance of poly(lactic acid)/flax fibre-reinforced biocomposites. Mater Design 66:473–485

    Article  CAS  Google Scholar 

  • Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech Mater 40:446–452

    Article  Google Scholar 

  • Orue A, Jauregi A, Peña-Rodriguez C, Labidi J, Eceiza A, Arbelaiz A (2015) The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Compos Part B-Eng 73:132–138

    Article  CAS  Google Scholar 

  • Río JCd, Gutiérrez A, Rodríguez IM, Ibarra D, Martínez áT, (2007) Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR. J Anal Appl Pyrol 79:39–46

    Article  CAS  Google Scholar 

  • Sarasua JR, Arraiza ALp, Balerdi P, Maiza I, (2005) Crystallinity and mechanical properties of optically pure polylactides and their blends. Polym Eng Sci 45:745–753

    Article  CAS  Google Scholar 

  • Sawpan MA, Pickering KL, Fernyhough A (2011) Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos Part A-Appl S 42:310–319

    Article  CAS  Google Scholar 

  • Schmidt SC, Hillmyer MA (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci Pol Phys 39:300–313

    Article  CAS  Google Scholar 

  • Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos Part A-Appl S 39:1632–1637

    Article  CAS  Google Scholar 

  • Srithep Y, Pholharn D, Turng L-S, Veang-in O (2015) Injection molding and characterization of polylactide stereocomplex. Polym Degrad Stabil 120:290–299

    Article  CAS  Google Scholar 

  • Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T (2007) How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci 43:775–787

    Article  CAS  Google Scholar 

  • Tsuji H, Ikada Y (1993) Stereocomplex formation between enantiomeric poly(lactic acids). 9 Stereocomplexation from the Melt. Macromolecules 26:6918–6926

    Article  CAS  Google Scholar 

  • Tsuji H, Ikada Y (1999) Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. mechanical properties and morphology of solution-cast films. Polymer 40:6699–6708

    Article  CAS  Google Scholar 

  • Xu H, Tang S, Chen J, Yin P, Pu W, Lu Y (2012) Thermal and phase-separation behavior of injection-molded poly(l-lactic acid)/poly(d-lactic acid) blends with moderate optical purity. Polym Bull 68:1135–1151

    Article  CAS  Google Scholar 

  • Yang H, Rong Y, Chen H, Dong HL, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yu M, Zhang H, Liu Z, Ge Z, Kong F, Shao H, Hu X (2019) Effects of fiber dimension and its distribution on the properties of Lyocell and ramie fibers reinforced polylactide composites. Fiber Polym 20:1726–1732

    Article  CAS  Google Scholar 

  • Zhang J, Sato H, Tsuji H, Noda I, Ozaki Y (2005) Differences in the CH3O=C interactions among poly(L-lactide), poly(L-lactide)/poly(D-lactide) stereocomplex, and poly(3-hydroxybutyrate) studied by infrared spectroscopy. J Mol Struct 735–736:249–257

    Article  CAS  Google Scholar 

  • Zhang H, Ming R, Yang G, Li Y, Li Q, Shao H (2015) Influence of alkali treatment on flax fiber for use as reinforcements in polylactide stereocomplex composites. Polym Eng Sci 55:2553–2558

    Article  CAS  Google Scholar 

  • Zhang H, Li Y, Yang G, Yu M, Shao H (2020) Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites. J Polym Eng 40:403–408

    Article  CAS  Google Scholar 

Download references

Funding

Financial supports from National Key Research and Development Program of China (2017YFB0309501) and Natural Science Foundation of Shanghai (16ZR1401600) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huihui Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest, and no animal studies or human participants were involved in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, Q., Edgar, K.J. et al. Structure and properties of flax vs. lyocell fiber-reinforced polylactide stereocomplex composites. Cellulose 28, 9297–9308 (2021). https://doi.org/10.1007/s10570-021-04105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04105-0

Keywords

Navigation