Skip to main content
Log in

Changes in the molecular structure of cellulose nanocrystals upon treatment with solvents

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The morphological properties of nano cellulosic materials affect their industrial applications significantly. Solvents are commonly used in treating cellulosic materials in altered applications. In this work, the treatment of cellulose nanocrystals (CNCs) with dimethyl sulfoxide (DMSO) (99.5%) and N-methyl morpholine-N-oxide (NMMO) (50%) was investigated comprehensively under different conditions to evaluate the effect of solvent treatment on the properties of CNCs. A partial polymorphic transition of cellulose I to II was observed when CNCs were treated with the solvents. The temperature of the treatment was more influential than the time of the treatment in altering the CNC properties. XRD, light scattering, and wettability analyses confirmed that the partial dissolution of CNCs in solvents reordered the cellulosic chains from parallel to antiparallel. It also made more hydroxyl groups accessible on CNCs for hydrogen bonding, facilitating the CNC aggregation and instability in solutions. The XPS analysis revealed a remarkable alteration in the relative amounts of components in C 1s, reflecting transformation in the chemical bonds from C=O/O–C–O to C–O on the CNC surface. The increase in the hydroxyl group of CNCs also improved the water-uptake and hydrophilicity of CNCs when they were treated with solvents. The results of this work would suggest that the alteration in the CNC characteristics should be considered when selecting solvents for developing industrial applications for CNCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Raw data of this work can be available upon request from the corresponding author.

References

  • Aguayo M, Fernández Pérez A, Reyes G, Oviedo C, Gacitúa W, Gonzalez R, Uyarte O (2018) Isolation and characterization of cellulose nanocrystals from rejected fibers originated in the kraft pulping process. Polymers 10(10):1145–1156

    Article  PubMed Central  CAS  Google Scholar 

  • Arnata IW, Suprihatin S, Fahma F, Richana N, Sunarti TC (2020) Cationic modification of nanocrystalline cellulose from sago fronds. Cellulose 27(6):3121–3141

    Article  CAS  Google Scholar 

  • Askadskii A, Popova M, Matseevich T, Kurskaya E (2014) The Influence of the degree of crystallinity on the glass transition temperature of polymers. Adv Mater Res 864:751–754

    Google Scholar 

  • Banerjee M, Saraswatula S, Williams A, Brettmann B (2020) Effect of purification methods on commercially available cellulose nanocrystal properties and TEMPO Oxidation. Processes 8(6):698–712

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054

    Article  CAS  PubMed  Google Scholar 

  • Benselfelt T, Cranston ED, Ondaral S, Johansson E, Brumer H, Rutland MW, Wågberg L (2016) Adsorption of xyloglucan onto cellulose surfaces of different morphologies: an entropy-driven process. Biomacromolecules 17(9):2801–2811

    Article  CAS  PubMed  Google Scholar 

  • Biganska O, Navard P (2003) Phase diagram of a cellulose solvent: N-methylmorpholine–N-oxide–water mixtures. Polymer 44(4):1035–1039

    Article  CAS  Google Scholar 

  • Biganska O, Navard P (2009) Morphology of cellulose objects regenerated from cellulose-N-methylmorpholine N-oxide-water solutions. Cellulose 16(2):179–188

    Article  CAS  Google Scholar 

  • Casarano R, Pires PA, Borin AC, El Seoud OA (2014) Novel solvents for cellulose: use of dibenzyldimethylammonium fluoride/dimethyl sulfoxide (DMSO) as solvent for the etherification of the biopolymer and comparison with tetra (1-butyl) ammonium fluoride/DMSO. Ind Crops Prod 54:185–191

    Article  CAS  Google Scholar 

  • Chen D, van de Ven TG (2016) Flocculation kinetics of precipitated calcium carbonate (PCC) with sterically stabilized nanocrystalline cellulose (SNCC). Coll Surf A 506:789–793

    Article  CAS  Google Scholar 

  • Costa LA, Fonseca AF, Pereira FV, Druzian JI (2015) Extraction and characterization of cellulose nanocrystals from corn stover. Cell Chem Technol 49(2):127–133

    Google Scholar 

  • Dankovich TA, Gray DG (2011) Contact angle measurements on smooth nanocrystalline cellulose (I) thin films. J Adhes Sci Technol 25(6–7):699–708

    Article  CAS  Google Scholar 

  • Dong S, Bortner MJ, Roman M (2016) Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study. Ind Crops Prod 93:76–87

    Article  CAS  Google Scholar 

  • Douard L, Bras J, Encinas T, Belgacem N (2020) Natural acidic deep eutectic solvent to obtain cellulose nanocrystals using the design of experience approach. Carbohydr Polym 252:117136–117145

    Article  PubMed  CAS  Google Scholar 

  • El-Wakil NA, Hassan ML (2008) Structural changes of regenerated cellulose dissolved in FeTNa, NaOH/thiourea, and NMMO systems. J Appl Pol Sci 109(5):2862–2871

    Article  CAS  Google Scholar 

  • Fatona A, Berry RM, Brook MA, Moran-Mirabal JM (2018) Versatile surface modification of cellulose fibers and cellulose nanocrystals through modular triazinyl chemistry. Chem Mater 30(7):2424–2435

    Article  CAS  Google Scholar 

  • Feizi ZH, Fatehi P (2020) Carboxymethylated cellulose nanocrystals as clay suspension dispersants: effect of size and surface functional groups. Cellulose 27:3759–3772

    Article  CAS  Google Scholar 

  • Feizi ZH, Fatehi P (2021) Interaction of hairy carboxyalkyl cellulose nanocrystals with cationic surfactant: Effect of carbon spacer. Carbohydr Polym 255:117396–117407

    Article  CAS  PubMed  Google Scholar 

  • Feizi ZH, Kazzaz AE, Kong F, Fatehi P (2019) Evolving a flocculation process for isolating lignosulfonate from solution. Sep Purif Technol 222:254–263

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    Article  CAS  Google Scholar 

  • French AD (2020) Increment in evolution of cellulose crystallinity analysis. Cellulose 27:5445–5448

    Article  Google Scholar 

  • Glińska K, Lerigoleur C, Giralt J, Torrens E, Bengoa C (2020) Valorization of cellulose recovered from WWTP sludge to added value levulinic acid with a Brønsted acidic ionic liquid. Catalysts 10(9):1004–1020

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Hambardzumyan A, Foulon L, Chabbert B, Aguié-Béghin V (2012) Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties. Biomacromolecules 13(12):4081–4088

    Article  CAS  PubMed  Google Scholar 

  • Han J, Zhou C, Wu Y, Liu F, Wu Q (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14(5):1529–1540

    Article  CAS  PubMed  Google Scholar 

  • Hauru LK, Hummel M, King AW, Kilpelainen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13(9):2896–2905

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Morales J, Morales K, Ramos D, Ortiz-Quiles EO, Lopez-Encarnacion JM, Nicolau E (2017) Examining the use of nanocellulose composites for the sorption of contaminants of emerging concern: an experimental and computational study. ACS Omega 2(11):7714–7722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MIU, Sherrell R, Langrish TAG (2010) An investigation of the relationship between glass transition temperatures and the crystallinity of spray-dried powders. Dry Technol 28(3):361–368

    Article  CAS  Google Scholar 

  • Jia X, Chen Y, Shi C, Ye Y, Wang P, Zeng X, Wu T (2013) Preparation and characterization of cellulose regenerated from phosphoric acid. J Agric Food Chem 61(50):12405–12414

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Tang L, Gao X, Zhang W, Ma J, Zhang L (2019) Solvent regulation approach for preparing cellulose-nanocrystal-reinforced regenerated cellulose fibers and their properties. ACS Omega 4(1):2001–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin E, Guo J, Yang F, Zhu Y, Song J, Jin Y, Rojas OJ (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr Polym 143:327–335

    Article  CAS  PubMed  Google Scholar 

  • Johnson A, Jones A (2019) Testing for water in DMSO: exploring alternatives to volumetric karl fischer analysis. Pharm Technol 43(5):44–48

    Google Scholar 

  • Ju X, Bowden M, Brown EE, Zhang X (2015) An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr Polym 123:476–481

    Article  CAS  PubMed  Google Scholar 

  • Kaboorani A, Riedl B (2015) Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Ind Crop Prod 65:45–55

    Article  CAS  Google Scholar 

  • Kazzaz AE, Feizi ZH, Kong F, Fatehi P (2018a) Interaction of poly (acrylic acid) and aluminum oxide particles in suspension: particle size effect. Colloid Surf A 556:218–226

    Article  CAS  Google Scholar 

  • Kazzaz AE, Feizi ZH, Fatehi P (2018b) Interaction of sulfomethylated lignin and aluminum oxide. Colloid Polym Sci 296(11):1867–1878

    Article  CAS  Google Scholar 

  • Kim HC, Mun S, Ko HU, Zhai L, Kafy A, Kim J (2016) Renewable smart materials. Smart Mater Struct 25(7):073001. https://doi.org/10.1088/0964-1726/25/7/073001

    Article  CAS  Google Scholar 

  • King AW, Mäkelä V, Kedzior SA, Laaksonen T, Partl GJ, Heikkinen S, Koskela H, Heikkinen HA, Holding AJ, Cranston ED, Kilpeläinen I (2018) Liquid-state NMR analysis of nanocelluloses. Biomacromolecules 19(7):2708–2720

    Article  CAS  PubMed  Google Scholar 

  • Krysztof M, Olejnik K, Kulpinski P, Stanislawska A, Khadzhynova S (2018) Regenerated cellulose from N-methylmorpholine N-oxide solutions as a coating agent for paper materials. Cellulose 25(6):3595–3607

    Article  CAS  Google Scholar 

  • Laitinen O, Ojala J, Sirviö JA, Liimatainen H (2017) Sustainable stabilization of oil in water emulsions by cellulose nanocrystals synthesized from deep eutectic solvents. Cellulose 24(4):1679–1689

    Article  CAS  Google Scholar 

  • Li F, Biagioni P, Bollani M, Maccagnan A, Piergiovanni L (2013) Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose 20(5):2491–2504

    Article  CAS  Google Scholar 

  • Li Y, Wang J, Liu X, Zhang S (2018) Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects. Chem Sci 9(17):4027–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6(10):5384–5393

    Article  CAS  PubMed  Google Scholar 

  • Man Z, Muhammad N, Sarwono A, Bustam MA, Kumar MV, Rafiq S (2011) Preparation of cellulose nanocrystals using an ionic liquid. J Polym Environ 19(3):726–731

    Article  CAS  Google Scholar 

  • Maurer JJ (1965) Relation between glass transition temperature and composition of ethylene propylene copolymers. Rubber Chem Technol 38(4):979–990

    Article  CAS  Google Scholar 

  • Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19(1):32–40

    Article  CAS  Google Scholar 

  • Moriana R, Vilaplana F, Ek M (2016) Cellulose nanocrystals from forest residues as reinforcing agents for composites: a study from macro-to nano-dimensions. Carbohydr Polym 139:139–149

    Article  CAS  PubMed  Google Scholar 

  • Ng HM, Sin LT, Tee TT, Hui BST, D, Low CY, Rahmat AR, (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B Eng 75:176–200

    Article  CAS  Google Scholar 

  • Poletto M, Pistor V, Zattera AJ (2013) Chapter 2: Structural characteristics and thermal properties of native cellulose. In: van de Ven T (ed) Cellulose fundamental aspects. Intech publisher, pp 45–68

    Google Scholar 

  • Rabideau BD, Ismail AE (2015) Effect of water content in N-methylmorpholine N-oxide/cellulose solutions on thermodynamics, structure, and hydrogen bonding. J Phys 119(48):15014–15022

    CAS  Google Scholar 

  • Reid MS, Villalobos M, Cranston ED (2017) The role of hydrogen bonding in non-ionic polymer adsorption to cellulose nanocrystals and silica colloids. Curr Opp Colloid Interf Sci 29:76–82

    Article  CAS  Google Scholar 

  • Samsudin NA, Low FW, Yusoff Y, Shakeri M, Tan XY, Lai CW, Asim N, Newas KS, Tiong SK, Amin N (2020) Effect of temperature on synthesis of cellulose nanoparticles via ionic liquid hydrolysis process. J Mol Liq 308:113030–113037

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Semin DJ, Malone TJ, Paley MT, Woods PW (2005) A novel approach to determine water content in DMSO for a compound collection repository. J Biomol Screen 10(6):568–572

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Zhang X, Nair SS, Ragauskas A, Zhu J, Deng Y (2014) Thermally enhanced high performance cellulose nano fibril barrier membranes. RSC Adv 4(85):45136–45142

    Article  CAS  Google Scholar 

  • Sirviö JA (2019) Fabrication of regenerated cellulose nanoparticles by mechanical disintegration of cellulose after dissolution and regeneration from a deep eutectic solvent. J Mater Chem A 7(2):755–763

    Article  Google Scholar 

  • Sriamornsak P, Wattanakorn N, Nunthanid J, Puttipipatkhachorn S (2008) Mucoadhesion of pectin as evidence by wettability and chain interpenetration. Carbohydr Polym 74(3):458–467

    Article  CAS  Google Scholar 

  • Viet D, Beck-Candanedo S, Gray DG (2007) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14(2):109–113

    Article  CAS  Google Scholar 

  • Wan Y, An F, Zhou P, Liu Y, Lu C, Chen H (2017) Effect of the polymorphs of cellulose on its pyrolysis kinetic and char yield. J Anal Appl Pyrolysis 127:223–228

    Article  CAS  Google Scholar 

  • Wan Ishak WH, Ahmad I, Ramli S, Mohd Amin MCI (2018) Gamma irradiation-assisted synthesis of cellulose nanocrystal-reinforced gelatin hydrogels. Nanomaterials 8(10):749–762

    Article  PubMed Central  CAS  Google Scholar 

  • Yang X, Wang X, Liu H, Zhao Y, Jiang S, Liu L (2017) Impact of dimethyl sulfoxide treatment on morphology and characteristics of nanofibrillated cellulose isolated from corn husks. BioResources 12(1):95–106

    Article  CAS  Google Scholar 

  • Yao W, Weng Y, Catchmark JM (2020) Improved cellulose X-ray diffraction analysis using fourier series modeling. Cellulose 27(10):5563–5579

    Article  CAS  Google Scholar 

  • Yue Y, Zhou C, French AD, Xia G, Han G, Wang Q, Wu Q (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19(4):1173–1187

    Article  CAS  Google Scholar 

  • Zainuddin N, Ahmad I, Kargarzadeh H, Ramli S (2017) Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin. Carbohydr Polym 163:261–269

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Karkooti A, Liu L, Sadrzadeh M, Thundat T, Liu Y, Narain R (2018) Fabrication of antifouling and antibacterial polyethersulfone (PES)/cellulose nanocrystals (CNC) nanocomposite membranes. J Membr Sci 549:350–356

    Article  CAS  Google Scholar 

  • Zhao H, Kwak JH, Wang Y, Franz JA, White JM, Holladay JE (2007) Interactions between cellulose and N-methylmorpholine-N-oxide. Carbohydr Polym 67(1):97–103

    Article  CAS  Google Scholar 

  • Zielińska A, Martins-Gomes C, Ferreira NR, Silva AM, Nowak I, Souto EB (2018) Anti-inflammatory and anti-cancer activity of citral: optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer®. Int J Pharm 553(1–2):428–440

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The funding support of this work was provided by NSERC, Canada Foundation for Innovation, and Canada Research Chairs programs.

Author information

Authors and Affiliations

Authors

Contributions

ZHF: raw data, method, concept, first draft; PF: revision, supervision.

Corresponding author

Correspondence to Pedram Fatehi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, and both authors approved the publication of this paper.

Human or animal rights

This article does not contain any studies with human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4285 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feizi, Z.H., Fatehi, P. Changes in the molecular structure of cellulose nanocrystals upon treatment with solvents. Cellulose 28, 7007–7020 (2021). https://doi.org/10.1007/s10570-021-03972-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-03972-x

Keywords

Navigation