Skip to main content
Log in

Comparison of nonproductive adsorption of cellulase onto lignin isolated from pretreated lignocellulose

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Lignin, as a main factor inhibiting the enzymatic hydrolysis of lignocellulose, was investigated by comparing lignin isolated from untreated and pretreated lignocellulose to elucidate the differences in the enzyme adsorption ability. The nonproductive adsorption of cellulase on lignin was investigated by using a quartz crystal microbalance with dissipation. The results indicated that more cellulase adsorbed on the lignin isolated from autohydrolysis and green liquor-pretreated lignocellulose than on protolignin. Higher temperature and enzyme concentration increased the initial adsorption rate and the amount of enzyme adsorbed on lignin. A dynamic equation for enzyme adsorption on lignin was established. The adsorption of enzymes on lignin increased as the content of phenolic hydroxyl groups, and β-β and β-5 linkages in the lignin increased, attributed to enhanced hydrogen bonding and hydrophobic interaction. Consequently, inhibition of the enzymatic hydrolysis of cellulose was promoted by a higher phenolic hydroxyl group, β-β, and β-5 content. The adsorption of the enzyme components on lignin followed the order: β-glucosidase > xylanase > endo-glucanase > cellobiohydrolase, as revealed by polyacrylamide gel electrophoresis analysis. Electrostatic interaction increased the adsorption of β-glucosidase and xylanase on lignin, while synergistic hydrophobic interaction and hydrogen bonding increased the adsorption of endo-glucanase and cellobiohydrolase on lignin. The results indicate that the adsorption of enzymes on lignin is affected by the structure of lignin and the composition of the enzymes. The findings of the current study provide fundamental knowledge for improving the enzymatic conversion of lignocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bansal P, Vowell BJ, Hall M, Realff MJ, Lee JH, Bommarius AS (2012) Elucidation of cellulose accessibility, hydrolysability and reactivity as the major limitations in the enzymatic hydrolysis of cellulose. Bioresour Technol 107:243–250

    PubMed  CAS  Google Scholar 

  • Canilha L, Chandel AK, Suzane Dos Santos Milessi T, Antunes FAF, Luiz Da Costa Freitas W, Das Graçaa Almeida Felipe M, Da Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:1–15

    Google Scholar 

  • Cao S, Pu Y, Studer M, Wyman C, Ragauskas AJ, Oak Ridge National Lab, ORNL ORTU (2012) Chemical transformations of Populus trichocarpa during dilute acid pretreatment. RSC Adv 2:10925–10936

    CAS  Google Scholar 

  • Cheng G, Datta S, Liu Z, Wang C, Murton JK, Brown PA, Jablin MS, Dubey M, Majewski J, Halbert CE, Browning JF, Esker AR, Watson BJ, Zhang H, Hutcheson SW, Huber DL, Sale KL, Simmons BA, Kent MS (2012) Interactions of endoglucanases with amorphous cellulose films resolved by neutron reflectometry and quartz crystal microbalance with dissipation monitoring. Langmuir 28:8348–8358

    PubMed  CAS  Google Scholar 

  • Cui C, Sun R, Argyropoulos DS (2014) Fractional precipitation of softwood kraft lignin: isolation of narrow fractions common to a variety of lignins. ACS Sustain Chem Eng 2:959–968

    CAS  Google Scholar 

  • Del Río JC, Rencoret J, Prinsen P, Martínez ÁT, Ralph J, Gutiérrez A (2011) Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem 60:5922–5935

    Google Scholar 

  • El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polym Degrad Stab 94:1632–1638

    Google Scholar 

  • Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Pauline JMT, Yao J, Ward M (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus trichoderma reesei. J Biol Chem 278:31988

    PubMed  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    CAS  Google Scholar 

  • Gu F, Yang L, Jin Y, Han Q, Chang H, Jameel H, Phillips R (2012) Green liquor pretreatment for improving enzymatic hydrolysis of corn stover. Bioresour Technol 124:299–305

    PubMed  CAS  Google Scholar 

  • Gu F, Posoknistakul P, Shimizu S, Yokoyama T, Jin Y, Matsumoto Y (2014) Synergistic contribution of hydrosulfide and carbonate anions to the β-O-4 bond cleavage of lignin model compounds in a green liquor pretreatment for enzymatic hydrolysis of lignocellulosic materials. J Wood Sci 60:346–352

    CAS  Google Scholar 

  • Guo F, Shi W, Sun W, Li X, Wang F, Zhao J, Qu Y (2014) Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Biotechnol Biofuels 7:38–48

    PubMed  PubMed Central  Google Scholar 

  • Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93

    CAS  Google Scholar 

  • Holtman KM, Chang HM, Jameel H, Kadla JF (2006) Quantitative C-13 NMR characterization of milled wood lignins isolated by different milling techniques. J Wood Chem Technol 26:21–34

    CAS  Google Scholar 

  • Huang C, Ma J, Zhang W, Huang G, Yong Q (2018) Preparation of lignosulfonates from biorefinery lignins by sulfomethylation and their application as a water reducer for concrete. Polymers 10:841–853

    PubMed Central  Google Scholar 

  • Huang C, Lin W, Lai C, Li X, Jin Y, Yong Q (2019) Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues. Bioresour Technol 285:121355–121364

    PubMed  CAS  Google Scholar 

  • Jiang B, Wang W, Gu F, Cao T, Jin Y (2016) Comparison of the substrate enzymatic digestibility and lignin structure of wheat straw stems and leaves pretreated by green liquor. Bioresour Technol 199:181–187

    PubMed  CAS  Google Scholar 

  • Jin Y, Jameel H, Chang H, Phillips R (2010) Green liquor pretreatment of mixed hardwood for ethanol production in a repurposed kraft pulp mill. J Wood Chem Technol 30:86–104

    CAS  Google Scholar 

  • Jung W, Sharma-Shivappa R, Kolar P (2019) Effect of enzyme interaction with lignin isolated from pretreated miscanthus × giganteus on cellulolytic efficiency. Processes 7:755–770

    CAS  Google Scholar 

  • Jung W, Sharma-Shivappa R, Park S, Kolar P (2020) Effect of cellulolytic enzyme binding on lignin isolated from alkali and acid pretreated switchgrass on enzymatic hydrolysis. 3 Biotech 10:1–10

    PubMed  Google Scholar 

  • Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48

    PubMed  CAS  Google Scholar 

  • Ko JK, Kim Y, Ximenes E, Ladisch MR (2015) Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol Bioeng 112:252–262

    PubMed  CAS  Google Scholar 

  • Ko JK, Ximenes E, Kim Y, Ladisch MR (2015) Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnol Bioeng 112:447–456

    PubMed  CAS  Google Scholar 

  • Lai C, Yang B, Lin Z, Jia Y, Huang C, Li X, Song X, Yong Q (2019) New strategy to elucidate the positive effects of extractable lignin on enzymatic hydrolysis by quartz crystal microbalance with dissipation. Biotechnol Biofuels 12:57–69

    PubMed  PubMed Central  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    PubMed  CAS  Google Scholar 

  • Li M, Si S, Hao B, Zha Y, Wan C, Hong S, Kang Y, Jia J, Zhang J, Li M, Zhao C, Tu Y, Zhou S, Peng L (2014) Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus. Bioresour Technol 169:447–454

    PubMed  CAS  Google Scholar 

  • Li M, Guo C, Luo B, Chen C, Wang S, Min D (2019) Comparing impacts of physicochemical properties and hydrolytic inhibitors on enzymatic hydrolysis of sugarcane bagasse. Bioprocess Biosyst Eng 43(1):111–122

    PubMed  CAS  Google Scholar 

  • Lin W, Chen D, Yong Q, Huang C, Huang S (2019) Improving enzymatic hydrolysis of acid-pretreated bamboo residues using amphiphilic surfactant derived from dehydroabietic acid. Bioresour Technol 293:122055–122067

    PubMed  CAS  Google Scholar 

  • Lu X, Zheng X, Li X, Zhao J (2016) Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water. Biotechnol Biofuels 9:118–130

    PubMed  PubMed Central  Google Scholar 

  • Martin-Sampedro R, Capanema EA, Hoeger I, Villar JC, Rojas OJ (2011) Lignin changes after steam explosion and laccase-mediator treatment of eucalyptus wood chips. J Agric Food Chem 59:8761–8769

    PubMed  CAS  Google Scholar 

  • Min D, Yang C, Shi R, Jameel H, Chiang V, Chang H (2013) The elucidation of the lignin structure effect on the cellulase-mediated saccharification by genetic engineering poplars (Populus nigra L. × Populus maximowiczii A.). Biomass Bioenerg 58:52–57

    CAS  Google Scholar 

  • Nakagame S, Chandra RP, Kadla JF, Saddler JN (2011) The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. Bioresour Technol 102:4507–4517

    PubMed  CAS  Google Scholar 

  • Nakagame S, Chandra RP, Saddler JN (2010) The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnol Bioeng 105:871–879

    PubMed  CAS  Google Scholar 

  • Nitsos C, Stoklosa R, Karnaouri A, Vörös D, Lange H, Hodge D, Crestini C, Rova U, Christakopoulos P (2016) Isolation and characterization of organosolv and alkaline lignins from hardwood and softwood biomass. ACS Sustain Chem Eng 4:5181–5193

    CAS  Google Scholar 

  • Ouyang J, Yan M, Kong D, Xu L (2006) A complete protein pattern of cellulase and hemicellulase genes in the filamentous fungus Trichoderma reesei. Biotechnol J 1:1266–1274

    PubMed  CAS  Google Scholar 

  • Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72

    PubMed  CAS  Google Scholar 

  • Qin C, Clarke K, Li K (2014) Interactive forces between lignin and cellulase as determined by atomic force microscopy. Biotechnol Biofuels 7:65–65

    PubMed  PubMed Central  Google Scholar 

  • Rahikainen JL, Evans JD, Mikander S, Kalliola A, Puranen T, Tamminen T, Marjamaa K, Kruus K (2013) Cellulase-lignin interactions-The role of carbohydrate-binding module and pH in non-productive binding. Enzyme Microbial Technol 53:315–321

    CAS  Google Scholar 

  • Rahikainen JL, Martin-Sampedro R, Heikkinen H, Rovio S, Marjamaa K, Tamminen T, Rojas OJ, Kruus K (2013) Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Bioresour Technol 133:270–278

    PubMed  CAS  Google Scholar 

  • Rahikainen JL, Moilanen U, Nurmi-Rantala S, Lappas A, Koivula A, Viikari L, Kruus K (2013) Effect of temperature on lignin-derived inhibition studied with three structurally different cellobiohydrolases. Bioresour Technol 146:118–125

    PubMed  CAS  Google Scholar 

  • Saini JK, Patel AK, Adsul M, Singhania RR (2016) Cellulase adsorption on lignin: a roadblock for economic hydrolysis of biomass. Renew Energy 98:29–42

    CAS  Google Scholar 

  • Sammond DW, Yarbrough JM, Mansfield E, Bomble YJ, Hobdey SE, Decker SR, Taylor LE, Resch MG, Bozell JJ, Himmel ME, Vinzant TB, Crowley MF (2014) Predicting enzyme adsorption to lignin films by calculating enzyme surface hydrophobicity. J Biol Chem 289:20960–20969

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass: an overview. Bioresour Technol 199:76–82

    PubMed  CAS  Google Scholar 

  • Sipponen MH, Rahikainen J, Leskinen T, Pihlajaniemi V, Mattinen M, Lange H, Crestini C, Österberg M (2017) Structural changes of lignin in biorefinery pretreatments and consequences to enzyme-lignin interactions. Nord Pulp Pap Res J 04:550–571

    Google Scholar 

  • Sun Q, Foston M, Meng X, Sawada D, Pingali SV, O'Neill HM, Li H, Wyman CE, Langan P, Ragauskas AJ, Kumar R (2014) Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment. Biotechnol Biofuels 7:150–164

    PubMed  PubMed Central  Google Scholar 

  • Turon X, Rojas OJ, Deinhammer RS (2008) Enzymatic kinetics of cellulose hydrolysis: a QCM-D study. Langmuir 24:3880–3887

    PubMed  CAS  Google Scholar 

  • Várnai A, Viikari L, Marjamaa K, Siika-aho M (2011) Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates. Bioresour Technol 102:1220–1227

    PubMed  Google Scholar 

  • Wen J, Sun S, Xue B, Sun R (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 6:359–391

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao L, Bai Y, Shi Z, Lu Q, Sun R (2014) Influence of alkaline hydrothermal pretreatment on shrub wood Tamarix ramosissima: characteristics of degraded lignin. Biomass Bioenerg 68:82–94

    CAS  Google Scholar 

  • Xu C, Liu F, Alam MA, Chen H, Zhang Y, Liang C, Xu H, Huang S, Xu J, Wang Z (2020) Comparative study on the properties of lignin isolated from different pretreated sugarcane bagasse and its inhibitory effects on enzymatic hydrolysis. Int J Biol Macromol 146:132–140

    PubMed  CAS  Google Scholar 

  • Yang Q, Pan X (2016) Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnol Bioeng 113:1213–1224

    PubMed  CAS  Google Scholar 

  • Ying W, Xu G, Yang H, Shi Z, Yang J (2019) The sequential Fenton oxidation and sulfomethylation pretreatment for alleviating the negative effects of lignin in enzymatic saccharification of sugarcane bagasse. Bioresour Technol 286:121392–121404

    PubMed  CAS  Google Scholar 

  • Yoo CG, Meng X, Puc Y, Ragauskas AJ (2020) The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: a comprehensive review. Bioresour Technol 301:122784–122798

    PubMed  CAS  Google Scholar 

  • Zanchetta A, Dos Santos ACF, Ximenes E, Da Cost Carreira Nunes C, Boscolo M, Gomes E, Ladisch MR (2018) Temperature dependent cellulase adsorption on lignin from sugarcane bagasse. Bioresour Technol 252:143–149

    PubMed  CAS  Google Scholar 

  • Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33

    PubMed  CAS  Google Scholar 

  • Zheng Y, Zhang S, Miao S, Su Z, Wang P (2013) Temperature sensitivity of cellulase adsorption on lignin and its impact on enzymatic hydrolysis of lignocellulosic biomass. J Biotechnol 166:135–143

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Innovation Project of Guangxi Graduate Education (YCBZ2019017), the Guangxi Natural Science Foundation (2018JJA130224), and the Guangxi Key Laboratory of Clean Pulp and Papermaking and the Pollution Control Foundation (ZR201805-7).

Author information

Authors and Affiliations

Authors

Contributions

Experiment design, M.L., D.M.; Investigation, M.L., Y.L., Q.Z., B.L.; Data analysis, M.L., C.C., J.L.S; Funding Acquisition, D.M., M.L.; Writing-Review & Editing, M.L., S.W., H.J., D.M

Corresponding author

Correspondence to Douyong Min.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Yi, L., Bin, L. et al. Comparison of nonproductive adsorption of cellulase onto lignin isolated from pretreated lignocellulose. Cellulose 27, 7911–7927 (2020). https://doi.org/10.1007/s10570-020-03357-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03357-6

Keywords

Navigation