Skip to main content
Log in

Preparation and characterisation of fire-resistant PNIPAAm/SA/AgNP thermosensitive network hydrogels and laminated cotton fabric used in firefighter protective clothing

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The protective clothing of firefighters requires specialised fire-resistant materials to ensure their safety. In this work, a novel fire-resistant material was prepared by laminating an interpenetrating polymer network (IPN) hydrogel on cotton fabric. The hydrogel-fabric laminates can be used as a flame-retardant material to produce firefighter protective clothing. The IPN hydrogel layer comprised poly (N-isopropylacrylamide) (PNIPAAm), sodium alginate (SA) and silver nanoparticles (Ag NPs). The chemical structures, swelling ratio, thermal properties, microstructures and tensile properties of the synthesised IPN hydrogel were investigated using Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy and tensile testing, respectively. Results revealed that the water content of IPN hydrogel was approximately 2186% at 20 °C, indicating excellent ability to absorb energy as water heats up and evaporate. FTIR results showed that the PNIPAAm and SA were only physical interpenetrated within the IPN hydrogel. Moreover, compared with pure PNIPAAm, IPN hydrogel displayed better elastic and breaking strength. Vertical burning findings indicated that the hydrogel-fabric laminates did not burn when exposed to flame for 12 s, whereas natural cotton fabric was burned out. Finally, the fire-resistant hydrogel displayed excellent antibacterial activity against Staphylococcus aureus and Escherichia coli through the introduction of Ag NPs, and the antibacterial activity for both microorganisms exceeded 96%. Overall, this study provided an easy approach to producing a fire-resistant material by laminating a hydrogel and a fabric that may save lives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

Download references

Funding

This research was supported from the Opening Project of Key Laboratory of High Performance fibers and products (Ministry of Education), and undergraduate innovation and entrepreneurship training program from Hubei Province (S201910495027; S201910495070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hualing He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Suryawanshi, A., He, H. et al. Preparation and characterisation of fire-resistant PNIPAAm/SA/AgNP thermosensitive network hydrogels and laminated cotton fabric used in firefighter protective clothing. Cellulose 27, 5391–5406 (2020). https://doi.org/10.1007/s10570-020-03146-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03146-1

Keywords

Navigation