Skip to main content
Log in

Superamphiphobic nanocellulose aerogels loaded with silica nanoparticles

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Superamphiphobic aerogels of cellulose nanofibrils (CNF) were successfully fabricated based on their porous rough structure via the chemical vapor deposition of fluorosilane reagent. FE-SEM images show the protruding nano-filaments, micron fibrils and sheet-like layers in the nanocellulose aerogel constitute the micro–nano hierarchical structure, which is critically important for the superamphiphobic performance. The lyophobicity increases with an increase in the nanocellulose concentration within the range of 0.5–2.0 wt%. For the fluorinated aerogel with CNF concentration of 2.0 wt%, the contact angles of water, castor oil, and hexdecane reach 163°, 154° and 143°, respectively. In addition, the loading of SiO2 nanoparticles in the CNF aerogels was conducted to increase the proportion of the nanoscale protuberance on the aerogel surface. The combination of nanocellulose and the loaded SiO2 nanoparticles optimizes the micro–nano hierarchical structure, which further improves the superamphiphobic performance with the contact angle of hexdecane reaching 150°. The superamphiphobic CNF-based composite aerogels with excellent liquid repellency for both water and oil can be used as potential self-cleaning substrates in the fields of gas sensors, catalysis, supercapacitor, and etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An B, Ma Y, Li W et al (2016) Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing. Chem Commun 52(73):10948–10951

    CAS  Google Scholar 

  • Aulin C, Netrval J, Wågberg L et al (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6(14):3298

    CAS  Google Scholar 

  • Baumann TF, Worsley MA, Han TY et al (2008) High surface area carbon aerogel monoliths with hierarchical porosity. J Non-Cryst Solids 354(29):3513–3515

    CAS  Google Scholar 

  • Benhamou K, Dufresne A, Magnin A et al (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym 99:74–83

    CAS  PubMed  Google Scholar 

  • Cervin NT, Aulin C, Larsson PT et al (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19(2):401–410

    CAS  Google Scholar 

  • Choi GR, Park J, Ha JW et al (2010) Superamphiphobic web of PTFEMA fibers via simple electrospinning without functionalization. Macromol Mater Eng 295(11):995–1002

    CAS  Google Scholar 

  • Dong J, Wang Q, Zhang Y et al (2017) Colorful superamphiphobic coatings with low sliding angles and high durability based on natural nanorods. ACS Appl Mater Interfaces 9(2):1941–1952

    CAS  PubMed  Google Scholar 

  • Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93(1):172–177

    CAS  PubMed  Google Scholar 

  • Guo X, Xue C, Jia S et al (2017) Mechanically durable superamphiphobic surfaces via synergistic hydrophobization and fluorination. Chem Eng J 320:330–341

    CAS  Google Scholar 

  • Hsieh C, Wu F, Chen W (2009) Super water-and oil-repellencies from silica-based nanocoatings. Surf Coat Technol 203(22):3377–3384

    CAS  Google Scholar 

  • Hüsing N, Schubert U (1998) Aerogels—airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37(1–2):22–45

    Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater Sci Process 89:461–466

    CAS  Google Scholar 

  • Jennings TA (1999) Lyophilization: introduction and basic principles. CRC Press, Boca Raton

    Google Scholar 

  • Jiang L, Tang Z, Clinton RM et al (2017) Two-step process to create “roll-off” superamphiphobic paper surfaces. ACS Appl Mater Interfaces 9(10):9195–9203

    CAS  PubMed  Google Scholar 

  • Jin H, Kettunen M, Laiho A et al (2011) Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 27(5):1930–1934

    CAS  PubMed  Google Scholar 

  • Kaushik M, Moores A (2016) Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18(3):622–637

    CAS  Google Scholar 

  • Kettunen M, Silvennoinen RJ, Houbenov N et al (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21(3):510–517

    CAS  Google Scholar 

  • Kim GS, Hyun SH, Park HH (2001) Synthesis of low-dielectric silica aerogel films by ambient drying. J Am Ceram Soc 84(2):453–455

    CAS  Google Scholar 

  • Kim HM, Kim HS, Kim SY et al (2015) Silica aerogel/epoxy composites with preserved aerogel pores and low thermal conductivity. e-Polymers 15(2):111–117

    CAS  Google Scholar 

  • Kim J, Mirzaei A, Kim HW et al (2018) Novel superamphiphobic surfaces based on micro–nano hierarchical fluorinated Ag/SiO2 structures. Appl Surf Sci 445:262–271

    CAS  Google Scholar 

  • Leitch ME, Li C, Ikkala O et al (2016) Bacterial nanocellulose aerogel membranes: novel high-porosity materials for membrane distillation. Environ Sci Technol Lett 3(3):85–91

    CAS  Google Scholar 

  • Li D, Guo Z (2017) Versatile superamphiphobic cotton fabrics fabricated by coating with SiO2/FOTS. Appl Surf Sci 426:271–278

    CAS  Google Scholar 

  • Li J, Wang X, Huang Q et al (2006) Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J Power Sources 158(1):784–788

    CAS  Google Scholar 

  • Li S, Zhang S, Wang X (2008) Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24(10):5585–5590

    CAS  PubMed  Google Scholar 

  • Li J, Zuo K, Wu W et al (2018a) Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II). Carbohydr Polym 196:376–384

    CAS  PubMed  Google Scholar 

  • Li M, Jiang H, Xu D (2018b) Synthesis and characterization of a xonotlite fibers–silica aerogel composite by ambient pressure drying. J Porous Mater 25(5):1417–1425

    CAS  Google Scholar 

  • Li J, Wang Y, Zhang L et al (2019) Nanocellulose/gelatin composite cryogels for controlled drug release. ACS Sustain Chem Eng 7(6):6381–6389

    CAS  Google Scholar 

  • Lu K, Xin X, Zhang N et al (2018) Photoredox catalysis over graphene aerogel-supported composites. J Mater Chem A 6(11):4590–4604

    CAS  Google Scholar 

  • Marmur A (2003) Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19(20):8343–8348

    CAS  Google Scholar 

  • Missoum K, Belgacem M, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6(5):1745–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moon RJ, Ashlie M, John N et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    CAS  PubMed  Google Scholar 

  • Mulyadi A, Zhang Z, Deng Y (2016) Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl Mater Interfaces 8(4):2732–2740

    CAS  PubMed  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H et al (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306

    CAS  PubMed  Google Scholar 

  • Qin JJ, Chen L, Zhao CH et al (2017) Cellulose nanofiber/cationic conjugated polymer hybrid aerogel sensor for nitroaromatic vapors detection. J Mater Sci 52(14):8455–8464

    CAS  Google Scholar 

  • Saito T, Uematsu T, Kimura S et al (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7(19):8804–8809

    CAS  Google Scholar 

  • Shu J, Qiu ZL, Tang DP (2018) Self-referenced smartphone imaging for visual screening of H2S using CuxO-polypyrrole conductive aerogel doped with graphene oxide framework. Anal Chem 90(16):9691–9694

    CAS  PubMed  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69

    Google Scholar 

  • Tan C, Fung BM, Newman JK et al (2001) Organic aerogels with very high impact strength. Adv Mater 13(9):644–646

    CAS  Google Scholar 

  • Thomas B, Raj MC, Joy J et al (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118(24):11575–11625

    CAS  PubMed  Google Scholar 

  • Tsuguyuki S, Masayuki H, Naoyuki T et al (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10(7):1992–1996

    Google Scholar 

  • Wang Z, Yu J, Zhang L et al (2017) Cellulose laurate ester aerogel as a novel absorbing material for removing pollutants from organic wastewater. Cellulose 24(11):5069–5078

    CAS  Google Scholar 

  • Wang K, Liu X, Tan Y et al (2019) Highly fluorinated and hierarchical HNTs/SiO2 hybrid particles for substrate-independent superamphiphobic coatings. Chem Eng J 359:626–640

    CAS  Google Scholar 

  • Xie Q, Xu J, Feng L et al (2004) Facile creation of a super-amphiphobic coating surface with bionic microstructure. Adv Mater 16(4):302–305

    CAS  Google Scholar 

  • Xu X, Zhang Z, Guo F et al (2012) Superamphiphobic self-assembled monolayer of thiol on the structured Zn surface. Colloids Surf A 396:90–95

    CAS  Google Scholar 

  • Yang W, Jiao L, Min D et al (2017) Effects of preparation approaches on optical properties of self-assembled cellulose nanopapers. RSC Adv 7(17):10463–10468

    CAS  Google Scholar 

  • Zhang F, Ren H, Dou J et al (2017) Cellulose nanofibril based-aerogel microreactors: a high efficiency and easy recoverable W/O/W membrane separation system. Sci Rep 7, 40096

    PubMed  PubMed Central  Google Scholar 

  • Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2(9):3110–3118

    CAS  Google Scholar 

  • Zhou H, Wang H, Niu H et al (2013) Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv Funct Mater 23(13):1664–1670

    CAS  Google Scholar 

  • Zhou H, Wang H, Niu H et al (2017) A waterborne coating system for preparing robust, self-healing, superamphiphobic surfaces. Adv Funct Mater 27(14):1604261

    Google Scholar 

Download references

Acknowledgments

The support of this work by the Natural Science Foundation of Jiangsu Province (BK20171450), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Foundation of State Key Laboratory of Biobased Material and Green Papermaking (No. KF201804, QiluUniversity of Technology, Shangdong Academy of Sciences) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibing Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, K., Wu, J., Chen, S. et al. Superamphiphobic nanocellulose aerogels loaded with silica nanoparticles. Cellulose 26, 9661–9671 (2019). https://doi.org/10.1007/s10570-019-02774-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02774-6

Keywords

Navigation