Skip to main content

Advertisement

Log in

Tough and self-healable nanocomposite hydrogels from poly(acrylic acid) and polyacrylamide grafted cellulose nanocrystal crosslinked by coordination bonds and hydrogen bonds

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Developing self-healable hydrogels with excellent mechanical performance is important for their potential applications. In this paper, tough and self-healable dual physically crosslinked nanocomposite hydrogels reinforced with polyacrylamide grafted cellulose nanocrystal (CNC-g-PAM) were fabricated by in situ free radical polymerization of acrylic acid (AA) monomers in the presence of FeCl3 (0.75% of AA mole) and CNC-g-PAM (1–3% of AA mass). The primary network of PAA/CNC-g-PAM nanocomposite hydrogels was constructed via coordination bonds between carboxylic groups from PAA and Fe3+ ions, while CNC-g-PAM served as both reinforcing nanofillers and physical crosslinkers via hydrogen bonds between PAA matrix and PAM chains on the surface of CNC. The nanocomposite hydrogels exhibited simultaneously improved elastic modulus, tensile strength and elongation at break with the increase of CNC-g-PAM loading. The dynamic nature of both coordination bonds and hydrogen bonds endowed the nanocomposite hydrogels with excellent energy dissipation, self-recovery ability and autonomous self-healing capacity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631

    Article  CAS  Google Scholar 

  • Du HS, Liu W, Zhang MM, Si CL, Zhang XY, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym 209:130–144

    Article  CAS  PubMed  Google Scholar 

  • Eke G, Mangir N, Hasirci N, MacNeil S, Hasirci V (2017) Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 129:188–198

    Article  CAS  PubMed  Google Scholar 

  • Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6:2583–2590

    Article  CAS  Google Scholar 

  • Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124

    Article  CAS  Google Scholar 

  • Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL (2007) A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater 19:1622–1626

    Article  CAS  Google Scholar 

  • Huang WJ, Wang YX, Huang ZQ, Wang XL, Chen LY, Zhang Y, Zhang LN (2018) On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing. ACS Appl Mater Interfaces 10:41076–41088

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Wang Q, Sun S, Zhu W, Wu P (2017) A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv Mater 29:1700321

    Article  CAS  Google Scholar 

  • Li BG, Zhang YD, Wu C, Guo B, Luo ZY (2018) Fabrication of mechanically tough and self-recoverable nanocomposite hydrogels from polyacrylamide grafted cellulose nanocrystal and poly(acrylic acid). Carbohydr Polym 198:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Yuk H, Zhang T, Parada GA, Koo H, Yu C, Zhao X (2016) Stretchable hydrogel electronics and devices. Adv Mater 28:4497–4505

    Article  CAS  PubMed  Google Scholar 

  • Liu JQ, Chen CF, He CC, Zhao J, Yang XJ, Wang HL (2012) Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. ACS Nano 6:8194–8202

    Article  CAS  PubMed  Google Scholar 

  • Liu SL, Oderinde O, Hussain I, Yao F, Fu GD (2018) Dual ionic cross-linked double network hydrogel with self-healing, conductive, and force sensitive properties. Polymer 144:111–120

    Article  CAS  Google Scholar 

  • McKee JR, Appel EA, Seitsonen J, Kontturi E, Scherman OA, Ikkala O (2014) Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv Funct Mater 24:2706–2713

    Article  CAS  Google Scholar 

  • Mo KW, Zhang TT, Yan W, Chang CY (2018) Tunicate cellulose nanocrystal reinforced polyacrylamide hydrogels with tunable mechanical performance. Cellulose 25:6561–6570

    Article  CAS  Google Scholar 

  • Ren Y, Zhang Y, Sun W, Gao F, Fu W, Wu P, Liu W (2017) Methyl matters: an autonomic rapid self-healing supramolecular poly(N-methacryloyl glycinamide) hydrogel. Polymer 126:1–8

    Article  CAS  Google Scholar 

  • Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung U (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41:5379–5384

    Article  CAS  Google Scholar 

  • Shao CY, Wang M, Chang HL, Xu F, Yang J (2017a) A self-healing cellulose nanocrystal-poly(ethylene glycol) nanocomposite hydrogel via Diels–Alder click reaction. ACS Sustain Chem Eng 5:6167–6174

    Article  CAS  Google Scholar 

  • Shao CY, Chang HL, Wang M, Xu F, Yang J (2017b) High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl Mater Interfaces 9:28305–28318

    Article  CAS  PubMed  Google Scholar 

  • Shao CY, Wang M, Meng L, Chang HL, Wang B, Xu F, Yang J, Wan PB (2018) Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem Mater 30:3110–3121

    Article  CAS  Google Scholar 

  • Wang W, Zhang Y, Liu W (2017a) Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog Polym Sci 71:1–25

    Article  CAS  Google Scholar 

  • Wang YM, Wang J, Yuan ZY, Han HY, Tao L, Li L, Guo XH (2017b) Chitosan cross-linked poly(acrylic acid) hydrogels: drug release control and mechanism. Colloids Surf B 152:252–259

    Article  CAS  Google Scholar 

  • Wei ZJ, He J, Liang T, Oh H, Athas J, Tong Z, Wang CY, Nie ZH (2013) Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions. Polym Chem 4:4601–4605

    Article  CAS  Google Scholar 

  • Wei Z, Yang JH, Zhou J, Xu F, Zrínyi M, Dussault PH, Osada Y, Chen YM (2014) Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem Soc Rev 43:8114–8131

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC (2013) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals-polyacrylamide nanocomposite hydrogels. Cellulose 20:227–237

    Article  CAS  Google Scholar 

  • Yang J, Han CR, Zhang XM, Xu F, Sun RC (2014) Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47:4077–4086

    Article  CAS  Google Scholar 

  • Yang D, Peng XW, Zhong LX, Cao XF, Chen W, Wang S, Liu CF, Sun RC (2015) Fabrication of a highly elastic nanocomposite hydrogel by surface modification of cellulose nanocrystals. RSC Adv 5:13878–13885

    Article  CAS  Google Scholar 

  • Zhang TT, Cheng QY, Ye DD, Chang CY (2017a) Tunicate cellulose nanocrystals reinforced nanocomposite hydrogels comprised by hybrid cross-linked networks. Carbohydr Polym 169:139–148

    Article  CAS  PubMed  Google Scholar 

  • Zhang TT, Zuo T, Hu DN, Chang CY (2017b) Dual physically cross-linked nanocomposite hydrogels reinforced by tunicate cellulose nanocrystals with high toughness and good self-recoverability. ACS Appl Mater Interfaces 9:24230–24237

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Fu C, Li Y, Wang K, Wang X, Wei Y, Tao L (2017c) Synthesis of an injectable, self-healable and dual responsive hydrogel for drug delivery and 3D cell cultivation. Polym Chem 8:537–544

    Article  CAS  Google Scholar 

  • Zhao XH (2014) Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10:672–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong M, Liu XY, Shi FK, Zhang LQ, Wang XP, Cheetham AG, Cui HG, Xi XM (2015) Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels. Soft Matter 11:4235–4241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20140967).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2220 kb)

Supplementary material 2 (MP4 5520 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Zhang, Y., Han, Y. et al. Tough and self-healable nanocomposite hydrogels from poly(acrylic acid) and polyacrylamide grafted cellulose nanocrystal crosslinked by coordination bonds and hydrogen bonds. Cellulose 26, 6701–6711 (2019). https://doi.org/10.1007/s10570-019-02581-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02581-z

Keywords

Navigation