Skip to main content
Log in

Stiffened and toughened polyacrylamide/polyanionic cellulose physical hydrogels mediated by ferric ions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

High-strength hydrogels have recently attracted many attentions owing to their potential applications in various fields. Yet, how to relive the contradiction between strength and ductility is still a challenge. In this work, a series of Fe(III)-crosslinked polyacrylamide/polyanionic cellulose composite physical hydrogels [PAM/PAC-Fe(III)] were firstly prepared via polymerizing acrylamide in PAC solution free of chemical crosslinkers, and followed by posttreatment in 0.1 M iron chloride solution. The obtained hydrogels were characterized by FTIR spectroscopy and scanning electron microscopy as well as tensile and compressive mechanics. Herein, the mechanics of PAM/PAC-Fe(III) hydrogels exhibits both stiffened and toughened properties, benefitting from the synergy between hydrogen bonding and Fe(III)-COO- coordination interactions within the networks. Subsequently, their properties were compared with those of Zr(IV)- and cellulose nanofiber (CNF)-based analogues in our previous studies. Fe(III) species afford the hydrogels more flexibility than the Zr(IV) ones do due to the lower valency and weaker affinity of Fe(III) than those of Zr(IV); PAC-based systems demonstrate broader and/or higher mechanical reinforcement effects than CNF-based ones ascribing to higher carboxylate content and higher dosage of PAC than CNF. In brief, the present research provides an effective approach to fabricate simultaneously stiffened and toughened hydrogels and provides a guidance to rationally design metal-ion mediated PAM-based composite hydrogels.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang T, Xu H, Jiao K, Zhu L, Brown HR, Wang H (2007) A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater 19:1622–1626. https://doi.org/10.1002/adma.200602533

    Article  CAS  Google Scholar 

  2. Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci 2:1400010. https://doi.org/10.1002/advs.201400010

    Article  CAS  Google Scholar 

  3. Volkan C, Zdravko K, Valentin R, Nikolai S, Miriam S, Ben K, Justus J, Jürgen PR, Matthias B (2016) Nanostructural evolution and self-healing mechanism of micellar hydrogels. Macromolecules 49(6):2281–2287. https://doi.org/10.1021/acs.macromol.6b00156

    Article  CAS  Google Scholar 

  4. Haraguchi K (2007) Nanocomposite hydrogels. Curr Opin Solid State Mater Sci 11:47–54. https://doi.org/10.1016/j.cossms.2008.05.001

    Article  CAS  Google Scholar 

  5. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158. https://doi.org/10.1002/adma.200304907

    Article  CAS  Google Scholar 

  6. Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487.10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T

    Article  CAS  Google Scholar 

  7. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung UI (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41:5379–5384. https://doi.org/10.1021/ma800476x

    Article  CAS  Google Scholar 

  8. Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T, Sato K, Haque MA, Nakajima T, Gong JP (2013) Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 12:932–937. https://doi.org/10.1038/nmat3713

    Article  CAS  PubMed  Google Scholar 

  9. Oliveira NM, Zhang YS, Ju J, Chen AZ, Chen Y, Sonkusale SR, Dokmeci MR, Reis RL, Mano JF, Khademhosseini A (2016) Hydrophobic hydrogels: towards construction of floating (bio)microdevices. Chem Mater 28:3641–3648. https://doi.org/10.1021/acs.chemmater.5b04445

    Article  CAS  Google Scholar 

  10. Zhong M, Liu YT, Liu XY, Shi FK, Xie XM (2016) Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency. Soft Matter 12:5420–5428. https://doi.org/10.1039/c6sm00242k

    Article  CAS  PubMed  Google Scholar 

  11. Hou S, Ma PX (2015) Stimuli-responsive supramolecular hydrogels with high extensibility and fast self-healing via precoordinated mussel-inspired chemistry. Chem Mater 27:7627–7635. https://doi.org/10.1021/acs.chemmater.5b02839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bodugoz-Senturk H, Macias CE, Kung JH, Muratoglu OK (2009) Poly(vinyl alcohol)-acrylamide hydrogels as load-bearing cartilage substitute. Biomaterials 30:589–596. https://doi.org/10.1016/j.biomaterials.2008.10.010

    Article  CAS  PubMed  Google Scholar 

  13. Rao P, Sun TL, Chen L, Takahashi R, Shinohara G, Guo H, King DR, Kurokawa T, Gong JP (2018) Tough hydrogels with fast, strong, and reversible underwater adhesion based on a multiscale design. Adv Mater 30:e1801884. https://doi.org/10.1002/adma.201801884

    Article  CAS  PubMed  Google Scholar 

  14. Huang Y, Zhong M, Huang Y, Zhu M, Pei Z, Wang Z, Wang Z, Xue Q, Xie X, Zhi C (2015) A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 6:10310. https://doi.org/10.1038/ncomms10310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Billiet T, Vandenhaute M, Schelfhout J, Vlierberghe SV, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 33:6020–6041. https://doi.org/10.1016/j.biomaterials.2012.04.050

    Article  CAS  PubMed  Google Scholar 

  16. Huang Y, Zhong M, Shi F, Liu X, Tang Z, Wang Y, Huang Y, Hou H, Xie X, Zhi C (2017) An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew Chem Int Ed 56:9141–9145. https://doi.org/10.1002/ange.201705212

    Article  CAS  Google Scholar 

  17. Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136. https://doi.org/10.1038/nature11409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Williams KS, Andzelm JW, Dong H, Snyder JF (2014) DFT study of metal cation-induced hydrogelation of cellulose nanofibrils. Cellulose 21:1091–1101. https://doi.org/10.1007/s10570-014-0254-y

    Article  CAS  Google Scholar 

  19. Wang XH, Song F, Qian D, He YD, Nie WC, Wang XL, Wang YZ (2018) Strong and tough fully physically crosslinked double network hydrogels with tunable mechanics and high self-healing performance. Chem Eng J 349:588–594. https://doi.org/10.1016/j.cej.2018.05.081

    Article  CAS  Google Scholar 

  20. Chen Q, Yan X, Zhu L, Chen H, Jiang B, Wei D, Huang L, Yang J, Liu B, Zheng J (2016) Improvement of mechanical strength and fatigue resistance of double network hydrogels by ionic coordination interactions. Chem Mater 28:5710–5720. https://doi.org/10.1021/acs.chemmater.6b01920

    Article  CAS  Google Scholar 

  21. Liang Y, Xue J, Du B, Nie J (2019) Ultrastiff, tough, and healable ionic–hydrogen bond cross-linked hydrogels and their uses as building blocks to construct complex hydrogel structures. ACS Appl Mater Interfaces 11:5441–5454. https://doi.org/10.1021/acsami.8b20520

    Article  CAS  PubMed  Google Scholar 

  22. Zheng SY, Ding H, Qian J, Yin J, Wu ZL, Song Y, Zheng Q (2016) Metal-coordination complexes mediated physical hydrogels with high toughness, stick-slip tearing behavior, and good processability. Macromolecules 49:9637–9646. https://doi.org/10.1021/acs.macromol.6b02150

    Article  CAS  Google Scholar 

  23. Chen W, Bu Y, Li D, Liu Y, Chen G, Wan X, Li N (2020) Development of high-strength, tough, and self-healing carboxymethyl guar gum-based hydrogels for human motion detection. Journal of Materials Chemistry C 8(3):900–908. https://doi.org/10.1039/C9TC05797H

    Article  CAS  Google Scholar 

  24. Niu J, Wang J, Dai X, Shao Z, Huang X (2018) Dual physically crosslinked healable polyacrylamide/cellulose nanofibers nanocomposite hydrogels with excellent mechanical properties. Carbohydr Polym 193:73–81. https://doi.org/10.1016/j.carbpol.2018.03.086

    Article  CAS  PubMed  Google Scholar 

  25. Dai X, Wang J, Teng F, Shao Z, Huang X (2019) Zr(IV)-crosslinked polyacrylamide/polyanionic cellulose composite hydrogels with high strength and unique acid resistance. J Polym Sci B Polym Phys 57:981–991. https://doi.org/10.1002/polb.24853

    Article  CAS  Google Scholar 

  26. Persson I (2018) Ferric chloride complexes in aqueous solution: an EXAFS study. J Solution Chem 47:797–805. https://doi.org/10.1007/s10953-018-0756-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nikoofar K, Khademi Z (2016) A review on green lewis acids: zirconium(IV) oxydichloride octahydrate (ZrOCl2·8H2O) and zirconium(IV) tetrachloride (ZrCl4) in organic chemistry. Res Chem Intermed 42:3929–3977. https://doi.org/10.1007/s11164-015-2260-6

    Article  CAS  Google Scholar 

  28. Liu Y, Lee BP (2016) Recovery property of double-network hydrogel containing a mussel-inspired adhesive moiety and nano-silicate. J Mater Chem B 4:6534–6540. https://doi.org/10.1039/c6tb01828a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sen G, Mishra S, Jha U, Pal S (2010) Microwave initiated synthesis of polyacrylamide grafted guar gum (GG-g-PAM)-characterizations and application as matrix for controlled release of 5-amino salicylic acid. Int J Biol Macromol 47:164–170. https://doi.org/10.1016/j.ijbiomac.2010.05.004

    Article  CAS  PubMed  Google Scholar 

  30. Zhou C, Wu Q, Yue Y, Zhang Q (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353:116–123. https://doi.org/10.1016/j.jcis.2010.09.035

    Article  CAS  PubMed  Google Scholar 

  31. Sivanantham M, Kesavamoorthy R, Sairam TN, Sabharwal KN, Raj B (2008) Stimulus response and molecular structural modification of polyacrylamide gel in nitric acid: a study by Raman, FTIR, and photoluminescence techniques. J Polym Sci B Polym Phys 46:710–720. https://doi.org/10.1002/polb.21402

    Article  CAS  Google Scholar 

  32. Hu Y, Du Z, Deng X, Wang T, Yang Z, Zhou W, Wang C (2016) Dual physically cross-linked hydrogels with high stretchability, toughness, and good self-recoverability. Macromolecules 49:5660–5668. https://doi.org/10.1021/acs.macromol.6b00584

    Article  CAS  Google Scholar 

  33. Trivedi HC, Patel CK, Patel RD (1981) Studies on carboxymethylated cellulose: potentiometric titrations, 1. Macromol Chem Phys 182:3561–3567. https://doi.org/10.1002/macp.1981.021821218

    Article  CAS  Google Scholar 

  34. Harrass K, Krüger R, Möller M, Albrecht K, Groll J (2013) Mechanically strong hydrogels with reversible behaviour under cyclic compression with mpa loading. Soft Matter 9:2869–2877. https://doi.org/10.1039/c2sm27603h

    Article  CAS  Google Scholar 

  35. Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128. https://doi.org/10.1002/adfm.200305197

    Article  CAS  Google Scholar 

  36. Qin X, Zhao F, Liu Y, Wang H, Feng S (2009) High mechanical strength hydrogels preparation using hydrophilic reactive microgels as crosslinking agents. Colloid Polym Sci 287:621–625. https://doi.org/10.1007/s00396-009-2018-z

    Article  CAS  Google Scholar 

  37. Deng Y, Hussain I, Kang M, Li K, Yao F, Liu S (2018) Self-recoverable and mechanical-reinforced hydrogel based on hydrophobic interaction with self-healable and conductive properties. Chem Eng J 353:900–910. https://doi.org/10.1016/j.cej.2018.07.187

    Article  CAS  Google Scholar 

  38. Li X, Qin H, Zhang X, Guo Z (2019) Triple-network hydrogels with high strength, low friction and self-healing by chemical-physical crosslinking. J Colloid Interface Sci 556:549–556. https://doi.org/10.1016/j.jcis.2019.08.100

    Article  CAS  PubMed  Google Scholar 

  39. Hua D, Gao S, Zhang M, Ma W, Huang C (2020) A novel xanthan gum-based conductive hydrogel with excellent mechanical, biocompatible, and self-healing performances. Carbohydrate Polymers 247:116743. https://doi.org/10.1016/j.carbpol.2020.116743

    Article  CAS  PubMed  Google Scholar 

  40. Shao C, Chang H, Wang M, Xu F, Yang J (2017) High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl Mater Interfaces 9:28305–28318. https://doi.org/10.1021/acsami.7b09614

    Article  CAS  PubMed  Google Scholar 

  41. Yuan N, Xu L, Wang H, Fu Y, Zhang Z, Liu L, Wang C, Zhao J, Rong J (2016) Dual physically cross-linked double network hydrogels with high mechanical strength, fatigue resistance, notch-insensitivity, and self-healing properties. ACS Appl Mater Interfaces 8(49):34034–34044. https://doi.org/10.1021/acsami.6b12243

    Article  CAS  PubMed  Google Scholar 

  42. Zheng Q, Zhao L, Wang J, Wang S, Liu Y, Liu X (2020) High-strength and high-toughness sodium alginate/polyacrylamide double physically crosslinked network hydrogel with superior self-healing and self-recovery properties prepared by a one-pot method. Colloid Surfaces A 589:124402. https://doi.org/10.1016/j.colsurfa.2019.124402

    Article  CAS  Google Scholar 

  43. Wei Z, He J, Liang T, Oh H, Athas J, Tong Z, Wang C, Nie Z (2013) Autonomous self-healing of poly (acrylic acid) hydrogels induced by the migration of ferric ions. Polym Chem 4(17):4601–4605. https://doi.org/10.1039/C3PY00692A

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by National Natural Science Foundation of China (21004005), Beijing Municipal Natural Science Foundation (2204096), and Beijing Institute of Technology Research Fund Program for young scholars as well as the BIT-Belarus joint grants (BITBLR2020001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianquan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ma, Y., Dai, X. et al. Stiffened and toughened polyacrylamide/polyanionic cellulose physical hydrogels mediated by ferric ions. Colloid Polym Sci 299, 999–1009 (2021). https://doi.org/10.1007/s00396-021-04823-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04823-8

Keywords

Navigation