Skip to main content

Advertisement

Log in

The influence of lignin content and structure on hemicellulose alkaline extraction for non-wood and hardwood lignocellulosic biomass

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The extractability of hemicellulose from different lignocellulosics depends on the source of biomass. Differences in hemicellulose extractability are believed to be due to plant-specific hemicellulose arrangement alongside lignin within the cell wall. In this research, six biomasses were used to probe hemicellulose alkaline extractability as a function of the native lignin within the biomasses. Quantitative 2D-HSQC and 13C NMR analysis were performed to determine the S/G (S: syringyl, G: guaiacyl) and lignin-carbohydrate complex (LCC) linkages of milled wood lignin isolated from these biomasses. A strong negative correlation was observed between total lignin content and hemicellulose extractability, demonstrating that a greater presence of lignin in the original material results in lower xylan solubilization. In addition, a correlation between S/G of lignin and xylan dissolution was found within a group of hardwoods and within a group of non-woods. This suggests that monomeric constituency also influences xylan’s propensity for dissolution in 10% NaOH. Although there is some uncertainty in the quantification of LCC linkages, both non-woods and hardwoods exhibited negative correlations between alkaline-stable LCC linkages content and xylan extractability. This suggests that alkaline-stable LCC structures are associated with a decrease in the alkaline extractability of hemicellulose.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albertsson AC, Edlund U, Varma IK (2011) Synthesis, chemistry and properties of hemicelluloses. In: Plackett D (ed) Biopolymers: new materials for sustainable films and coatings. Wiley, Chichester, pp 133–150

    Chapter  Google Scholar 

  • Al-Dajani WW, Tschirner UW (2008) Pre-extraction of hemicelluloses and subsequent kraft pulping part I: alkaline extraction. Tappi J 7(6):3–8

    CAS  Google Scholar 

  • Azhar S, Henriksson G, Theliander H, Lindström ME (2015) Extraction of hemicelluloses from fiberized spruce wood. Carbohydr Polym 117:19–24

    Article  CAS  PubMed  Google Scholar 

  • Balakshin MY, Capanema EA, H-m Chang (2007) MWL fraction with a high concentration of lignin–carbohydrate linkages: isolation and 2D NMR spectroscopic analysis. Holzforschung 61(1):1–7

    Article  CAS  Google Scholar 

  • Balakshin M, Capanema E, Gracz H, Chang H-m, Jameel H (2011) Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233(6):1097–1110

    Article  CAS  PubMed  Google Scholar 

  • Capanema EA, Balakshin MY, Kadla JF (2004) A comprehensive approach for quantitative lignin characterization by NMR spectroscopy. J Agric Food Chem 52(7):1850–1860

    Article  CAS  PubMed  Google Scholar 

  • Collins D, Pilotti C, Wallis A (1990) Correlation of chemical composition and kraft pulping properties of some Papua New Guinea reforestation woods. Appita J 43(2):193–198

    CAS  Google Scholar 

  • Crestini C, Melone F, Sette M, Saladino R (2011) Milled wood lignin: a linear oligomer. Biomacromolecules 12(11):3928–3935

    Article  CAS  PubMed  Google Scholar 

  • Del Río JC, Rencoret J, Prinsen P, Martínez AT, Ralph J, Gutiérrez A (2012) Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem 60(23):5922–5935

    Article  CAS  PubMed  Google Scholar 

  • Du X, Gellerstedt G, Li J (2013) Universal fractionation of lignin–carbohydrate complexes (LCCs) from lignocellulosic biomass: an example using spruce wood. Plant J 74(2):328–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebringerová A (2005) Structural diversity and application potential of hemicelluloses. Macromol Symp 232:1–12

    Article  CAS  Google Scholar 

  • Ebringerová A, Heinze T (2000) Xylan and xylan derivatives–biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21(9):542–556

    Article  Google Scholar 

  • Farhat W, Venditti RA, Hubbe M, Taha M, Becquart F, Ayoub A (2017) A review of water-resistant hemicellulose-based materials: processing and applications. Chemsuschem 10(2):305–323

    Article  CAS  PubMed  Google Scholar 

  • Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Fujimoto A, Matsumoto Y, Chang H-m, Meshitsuka G (2005) Quantitative evaluation of milling effects on lignin structure during the isolation process of milled wood lignin. J Wood Sci 51(1):89–91

    Article  CAS  Google Scholar 

  • Geng W, Huan T, Jin Y, Song J, H-m Chang, Jameel H (2014) Comparison of sodium carbonate–oxygen and sodium hydroxide–oxygen pretreatments on the chemical composition and enzymatic saccharification of wheat straw. Bioresour Technol 161:63–68

    Article  CAS  PubMed  Google Scholar 

  • Geng W, Venditti R, Pawlak J, H-m Chang (2018) Effect of delignification on hemicellulose extraction from switchgrass, poplar, and pine and its effect on enzymatic convertibility of cellulose-rich residues. BioResources 13(3):4946–4963

    CAS  Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800

    Article  CAS  PubMed  Google Scholar 

  • Giummarella N, Lawoko M (2017) Structural insights on recalcitrance during hydrothermal hemicellulose extraction from wood. ACS Sustain Chem Eng 5:5156–5165

    Article  CAS  Google Scholar 

  • Jackson MG (1977) Review article: the alkali treatment of straws. Anim Feed Sci Technol 2(2):105–130

    Article  Google Scholar 

  • Jiang X, Savithri D, Du X, Pawar S, Jameel H, H-m Chang, Zhou X (2016) Fractionation and characterization of kraft lignin by sequential precipitation with various organic solvents. ACS Sustain Chem Eng 5(1):835–842

    Article  CAS  Google Scholar 

  • Jiang X, Liu J, Du X, Hu Z, H-m Chang, Jameel H (2018) Phenolation to improve lignin reactivity toward thermosets application. ACS Sustain Chem Eng 6(4):5504–5512

    Article  CAS  Google Scholar 

  • Kim H, Ralph J (2010) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. Org Biomol Chem 8(3):576–591

    Article  CAS  PubMed  Google Scholar 

  • Koshijima T, Timell T, Zinbo M (1965) The number-average molecular weight of native hardwood xylans. J Polym Sci 11(1):265–270

    Google Scholar 

  • Lawther JM, Sun R, Banks WB (1996) Effects of extraction conditions and alkali type on yield and composition of wheat straw hemicellulose. J Appl Polym Sci 60(11):1827–1837

    Article  CAS  Google Scholar 

  • Martínez-Abad A, Giummarella N, Lawoko M, Vilaplana F (2018) Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods. Green Chem 20:2534–2546

    Article  Google Scholar 

  • Narron RH (2017) Biorefinery processing of diverse protolignins to assist biorefinery lignin valorization. Doctoral thesis, North Carolina State University

  • Narron RH, H-m Chang, Jameel H, Park S (2017) Soluble lignin recovered from biorefinery pretreatment hydrolyzate characterized by lignin–carbohydrate complexes. ACS Sustain Chem Eng 5(11):10763–10771

    Article  CAS  Google Scholar 

  • Paszner L (1988) Salt catalyzed wood bonding with hemicellulose. Holzforschung 42(1):11–20

    Article  Google Scholar 

  • Peng F, Peng P, Xu F, Sun R (2012) Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 30(4):879–903

    Article  CAS  PubMed  Google Scholar 

  • Rabetafika HN, Bchir B, Blecker C, Paquot M, Wathelet B (2014) Comparative study of alkaline extraction process of hemicelluloses from pear pomace. Biomass Bioenerg 61:254–264

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Schild G, Sixta H, Testova L (2010) Multifunctional alkaline pulping, delignification and hemicellulose extraction. Cell Chem Technol 44(1):35

    CAS  Google Scholar 

  • Sjostrom E (1993) Wood chemistry: fundamentals and applications. Academic Press, Espoo

    Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Lab Anal Proced. NREL, Golden, CO. NREL/TP-510-42618

  • Sun R, Lawther JM, Banks WB (1995) Influence of alkaline pre-treatments on the cell wall components of wheat straw. Ind Crops Prod 4(2):127–145

    Article  CAS  Google Scholar 

  • Sun R, Fang J, Tomkinson J (2000) Characterization and esterification of hemicelluloses from rye straw. J Agric Food Chem 48(4):1247–1252

    Article  CAS  PubMed  Google Scholar 

  • Tunc MS, Lawoko M, van Heiningen AR (2010) Understanding the limitations of removal of hemicelluloses during autohydrolysis of a mixture of southern hardwoods. BioResources 5(1):356–371

    CAS  Google Scholar 

  • Vena PF, Brienzo M, Garcia-Aparicio MP, Goergens JF, Rypstra T (2013) Hemicelluloses extraction from giant bamboo (Bambusa balcooa Roxburgh) prior to kraft or soda-AQ pulping and its effect on pulp physical properties. Holzforschung 67(8):863–870

    Article  CAS  Google Scholar 

  • Wen J, Xiao L, Sun Y, Sun S, Xu F, Sun R, Zhang X (2011) Comparative study of alkali-soluble hemicelluloses isolated from bamboo (Bambusa rigida). Carbohydr Res 346(1):111–120

    Article  CAS  PubMed  Google Scholar 

  • Whitmore FW (1978) Lignin-carbohydrate complex formed in isolated cell walls of callus. Phytochemistry 17(3):421–425

    Article  CAS  Google Scholar 

  • Young RJ, Lovell PA (2011) Introduction to polymers, 3rd edn. CRC Press Inc, Boca Raton, pp 299–308

  • Yuan T, Sun S, Xu F, Sun R (2011) Characterization of lignin structures and lignin–carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. J Agric Food Chem 59(19):10604–10614

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Helms GL, Gao X, Chen S (2013) Quantification of wheat straw lignin structure by comprehensive NMR analysis. J Agric Food Chem 61(46):10848–10857

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Southeastern Sun Grant Regional Program of the USDA-NIFA program [Grant Number 2013-38502-21423].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Venditti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 878 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, W., Narron, R., Jiang, X. et al. The influence of lignin content and structure on hemicellulose alkaline extraction for non-wood and hardwood lignocellulosic biomass. Cellulose 26, 3219–3230 (2019). https://doi.org/10.1007/s10570-019-02261-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02261-y

Keywords

Navigation