Skip to main content
Log in

Exceptional flame-retardant cellulosic foams modified with phosphorus-hybridized graphene nanosheets

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Lightweight bio-based foams from renewable cellulose nanofibers (CNF) and phosphorus-hybridized graphene nanosheets (PGN) were prepared by means of a simple freeze-drying process. By comparison, the CNF–Graphite, CNF–chemically reduced graphene nanosheets (CRG), CNF–red phosphorus (RP) composite foams were also fabricated. The CNF–PGN composite foam showed porous structures and the PGNs were uniformly distributed in the pore wall of the cellulose foams. The resultant CNF composite foams exhibited a thermal conductivity in the range of 0.0299–0.0310 W/(m K). The CNF–PGN composite foam exhibited a high char residue (25.6 wt%) at 800 °C, which was 205% higher than the calculated value, suggesting the excellent char formation ability. In the vertical burning tests, the CNF foam burnt out with rapid flame propagation, while the CNF–Graphite, CNF-RP and CNF–CRG composite foams cannot stop the smoldering behaviors. In contrast to these composite foams, the CNF–PGN composite foam displayed self-extinguishing behaviours and the flame spread was suppressed completely. Cone calorimeter measurements further manifested excellent fire retardancy of the CNF–PGN composite foam, which showed that the peak heat release rate was reduced to 14.6 kW/m2, lower than most of the reported by state-of-the-art flame retardant polymeric foams.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alongi J, Malucelli G (2015) Cotton flame retardancy: state of the art and future perspectives. RSC Adv 5:24239–24263

    Article  CAS  Google Scholar 

  • Braun U, Schartel B (2004) Flame retardant mechanisms of red phosphorus and magnesium hydroxide in high impact polystyrene. Macromol Chem Phys 205:2185–2196

    Article  CAS  Google Scholar 

  • Dasari A, Yu ZZ, Cai GP, Mai YW (2013) Recent developments in the fire retardancy of polymeric materials. Prog Polym Sci 38:1357–1387

    Article  CAS  Google Scholar 

  • De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631

    Article  CAS  Google Scholar 

  • Fan BT, Chen SJ, Yao QF, Sun QF, Jin CD (2017) Fabrication of cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation. Materials 10:311

    Article  CAS  PubMed Central  Google Scholar 

  • Geng JX, Kong BS, Yang SB, Jung HT (2010) Preparation of graphene relying on porphyrin exfoliation of graphite. Chem Commun 46:5091–5093

    Article  CAS  Google Scholar 

  • Guo WW, Wang X, Zhang P, Liu JJ, Song L, Hu Y (2018) Nano-fibrillated cellulose-hydroxyapatite based composite foams with excellent fire resistance. Carbohyd Polym 195:71–78

    Article  CAS  Google Scholar 

  • Han YY, Zhang XX, Wu XD, Lu CH (2015) Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures. ACS Sustain Chem Eng 3:1853–1859

    Article  CAS  Google Scholar 

  • Hu XM, Zhao YY, Cheng WM (2015) Effect of formaldehyde/phenol ratio (F/P) on the properties of phenolic resins and foams synthesized at room temperature. Polym Compos 36:1531–1540

    Article  CAS  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  • Jelle BP (2011) Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy Build 43:2549–2563

    Article  Google Scholar 

  • Kang J, Wood JD, Wells SA, Lee JH, Liu XL, Chen KS, Hersam MC (2015) Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9:3596–3604

    Article  PubMed  Google Scholar 

  • Kim MJ, Jean IY, Seo JM, Dai LM, Baek JB (2014) Graphene phosphonic acid as an efficient flame retardant. ACS Nano 8:2820–2825

    Article  CAS  PubMed  Google Scholar 

  • Kong QH, Wu T, Zhang HK, Zhang Y, Zhang MM, Si TY et al (2017) Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan. Appl Clay Sci 146:230–237

    Article  CAS  Google Scholar 

  • Lavoine N, Bergstrom L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J Mater Chem A 5:16105–16117

    Article  CAS  Google Scholar 

  • Levchik SV, Weil ED (2006) A review of recent progress in phosphorus-based flame retardants. J Fire Sci 24:345–364

    Article  CAS  Google Scholar 

  • Liu Y, Wang Q (2006) Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66. Polym Degrad Stab 91:3103–3109

    Article  CAS  Google Scholar 

  • Lorenzetti A, Besco S, Hrelja D, Roso M, Gallo E, Schartel B et al (2013) Phosphinates and layered silicates in charring polymers: the flame retardancy action in polyurethane foams. Polym Degrad Stab 98:2366–2374

    Article  CAS  Google Scholar 

  • Schartel B, Perret B, Dittrich B, Ciesielski M, Kraemer J, Mueller P et al (2016) Flame retardancy of polymers: the role of specific reactions in the condensed phase. Macromol Mater Eng 301:9–35

    Article  CAS  Google Scholar 

  • Scheirs J, Camino G, Tumiatti W (2001) Overview of water evolution during the thermal degradation of cellulose. Eur Polym J 37:933–942

    Article  CAS  Google Scholar 

  • Some S, Shackery I, Kim SJ, Jun SC (2015) Phosphorus-doped graphene oxide layer as a highly efficient flame retardant. Chem Eur J 21:15480–15485

    Article  CAS  PubMed  Google Scholar 

  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  • Thirumal M, Khastgir D, Singha NK, Manjunath BS, Naik YP (2008) Effect of foam density on the properties of water blown rigid polyurethane foam. J Appl Polym Sci 108:1810–1817

    Article  CAS  Google Scholar 

  • Wang L, Sanchez-Soto M (2015) Green bio-based aerogels prepared from recycled cellulose fiber suspensions. RSC Adv 5:31384–31391

    Article  CAS  Google Scholar 

  • Wang X, Hu Y, Song L, Yang HY, Xing WY, Lu HD (2011) In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J Mater Chem 21:4222–4227

    Article  CAS  Google Scholar 

  • Wang X, Kalali EN, Wan JT, Wang DY (2017) Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci 69:22–46

    Article  CAS  Google Scholar 

  • Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M et al (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10:277–283

    Article  CAS  PubMed  Google Scholar 

  • Wicklein B, Kocjan D, Carosio F, Camino G, Bergstrom L (2016) Tuning the nanocellulose–borate interaction to achieve highly flame retardant hybrid materials. Chem Mater 28:1985–1989

    Article  CAS  Google Scholar 

  • Wu Q, Lu JP, Qu BJ (2003) Preparation and characterization of microcapsulated red phosphorus and its flame-retardant mechanism in halogen-free flame retardant polyolefins. Polym Int 52:1326–1331

    Article  CAS  Google Scholar 

  • Xie HY, Ye Q, Si JY, Yang W, Lu HD, Zhang QZ (2016) Synthesis of a carbon nanotubes/ZnAl-layered double hydroxide composite as a novel flame retardant for flexible polyurethane foams. Polym Adv Technol 27:651–656

    Article  CAS  Google Scholar 

  • Yan DX, Xu L, Chen C, Tang JH, Ji X, Li ZM (2012) Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes. Polym Int 61:1107–1114

    Article  CAS  Google Scholar 

  • Yang X, Shi KY, Zhitomirsky I, Cranston ED (2015a) Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv Mater 27:6104–6109

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Jia ZJ, Chen YN, Zhang YR, Si JY, Yang BH et al (2015b) Carbon nanotube reinforced polylactide/basalt fiber composites containing aluminium hypophosphite thermal degradation, flame retardancy and mechanical properties. RSC Adv 5:105869–105879

    Article  CAS  Google Scholar 

  • Yang W, Zhang YR, Yuen ACY, Chen TBY, Chan MC, Peng LZ et al (2017) Synthesis of phosphorus-containing silane coupling agent for surface modification of glass fibers: effective reinforcement and flame retardancy in poly(1,4-butylene terephthalate). Chem Eng J 321:257–267

    Article  CAS  Google Scholar 

  • Yuan B, Zhang JM, Yu J, Song R, Mi QY, He JS et al (2016) Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels. Sci China Chem 59:1335–1341

    Article  CAS  Google Scholar 

  • Zhang JH, Kong QH, Yang LW, Wang DY (2016) Few layered Co(OH)2 ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chem 18:3066–3074

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant No. 21604081), Natural Science Foundation of Anhui Province (1608085QE99) and the Open Project of State Key Laboratory Cultivation Base for Non-metal Composites and Functional Materials (Grant No. 16kffk03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Wang or Weiyi Xing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5024 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Hu, Y., Wang, X. et al. Exceptional flame-retardant cellulosic foams modified with phosphorus-hybridized graphene nanosheets. Cellulose 26, 1247–1260 (2019). https://doi.org/10.1007/s10570-018-2127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2127-2

Keywords

Navigation