Skip to main content
Log in

Synthesis, characterization and antimicrobial activity of novel aminosalicylhydrazide cross linked chitosan modified with multi-walled carbon nanotubes

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

P-Aminosalicylhydrazide has successfully been applied as a cross linker for the epoxy chitosan Schiff’s base derivative. The aminosalicylhydrazide cross linked chitosan derivative was obtained by removing the benzaldehyde from its Schiff’s base derivative to regain the primary amine groups of chitosan. Two biocomposites based on this derivative filled with multi walled carbon nanotube (MWCNT) have been synthesized. Elemental analysis, FTIR spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy observations have been employed to prove the structure of the synthesized derivatives. The results showed that the investigated derivatives are more potent against the examined bacteria and fungi than the parent chitosan. They exhibited higher activity against Gram-positive bacteria than against Gram-negative bacteria. Some of them showed comparable or even greater activity than the used reference bactericides or fungicides. Thus, combination between chitosan and the used functionalized moieties as well as MWCNTs in one system has greatly improved the chitosan characteristics, may be considered as a route for achieving promising systems for antimicrobial agents which are taken as appropriate candidates in biomedical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd El-Ghany NA (2017) Antimicrobial activity of new carboxymethyl chitosan–carbon nanotube biocomposites and their swell ability in different pH media. J Carbohydr Chem 36:31–44

    Article  CAS  Google Scholar 

  • Ahmed S, Ikram S (2015) Chitosan & its derivatives: a review in recent innovations. IJPSR 6:14–30

    Google Scholar 

  • Ahmed S, Ahmad M, Ikram S (2014) Chitosan: a natural antimicrobial agent: a review. J Appl Chem 3:493–503

    CAS  Google Scholar 

  • Al-Jumaili A, Alancherry S, Bazaka K, Jacob MV (2017) Review on the antimicrobial properties of carbon nanostructures. Materials 10:1066–1091

    Article  CAS  PubMed Central  Google Scholar 

  • Anan NA, Hassan SM, Saad EM, Butler IS, Mostafa SI (2011) Preparation, characterization and pH-metric measurements of 4-hydroxysalicylidene chitosan Schiff-base complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ru(III), Rh(III), Pd(II) and Au(III). Carbohydr Res 346:775–793

    Article  CAS  PubMed  Google Scholar 

  • Annu Ahmed S, Ikram S (2017) Chitin and Chitosan: history, composition and properties, Chitosan. (Eds) S. Ahmed and S. Ikram, Scrivener & Wiley, New York, pp 3–24

  • Bhesaniya KD, Chanda SV, Baluja SH (2012) Epoxy aldehyde schiff bases: synthesis and antimicrobial study. Int J Pharm Res Scholars 1:6–10

    CAS  Google Scholar 

  • Bhoi MN, Borad MA, Panchal NK, Patel HD (2015) 2-Aminobenzothiazole containing novel Schiff bases derivatives: search for new Antibacterial agents. ILCPA 53:106–113

    Article  Google Scholar 

  • Burkhanova ND, Yugai SM, Pulatova KP, Nikonovich GV, Milusheva RY, Voropaeva NL, Rashidova SS (2000) Structural investigations of chitin and its deacetylation products. Chem Nat Compd 36:352–355

    Article  CAS  Google Scholar 

  • Chien RC, Yen MT, Mau JL (2016) Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr Polym 138:259–264

    Article  CAS  PubMed  Google Scholar 

  • Cuero RG, Osuji G, Washington A (1991) N-carboxymethylchitosan inhibition of aflatoxin production: role of zinc. Biotechnol Lett 13:441–444

    Article  CAS  Google Scholar 

  • Dorman H, Deans S (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    Article  CAS  PubMed  Google Scholar 

  • Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9:393–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Ghaouth A, Arul J, Grenier J, Asselin A (1992) Antifungal activity of chitosan on two post-harvest pathogens of strawberry fruits. Phytopathology 82:398–402

    Article  CAS  Google Scholar 

  • Entezari M, Tabatabaei ZG, Azarioun A, Sarabian S, Farahani GT (2015) In vitro evaluation of the antibacterial activity of modified multi-walled carbon nanotubes with phenolic extracts. J Biomater Tissue Eng 2:17–23

    Article  Google Scholar 

  • Eweis M, Elkholy SS, Elsabee MZ (2006) Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens. Int J Biol Macromol 38:1–8

    Article  CAS  Google Scholar 

  • Fattouch S, Caboni P, Coroneo V, Tuberoso C, Angioni A, Dessi S, Marzouki N, Cabras P (2007) Antimicrobial activity of Tunisian Quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. J Agric Food Chem 55(3):963–969

    Article  CAS  PubMed  Google Scholar 

  • Feng QL, Wu J, Chen GO, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mat Res 52:662–668

    Article  CAS  Google Scholar 

  • Gemma S, Kukreja G, Fattorusso C, Persico M, Romano MP, Altarelli M, Savini L, Campiani G, Fattorusso E, Basilico N, Taramelli D, Yardley V, Butini S (2006) Synthesis of N1-arylidene-N2-quinolyl- and N2-acrydinylhydrazones as potent antimalarial agents active against CQ-resistant P. falciparum strains. Bioorg Med Chem Lett 16:5384–5388

    Article  CAS  PubMed  Google Scholar 

  • Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429

    Article  CAS  Google Scholar 

  • Hadwiger LA, Kendra DF, Fristensky BW, Wagoner W, Muzzarelli RAA, Jeuniaux C, Gooday CW (eds) (1986) Chitin in nature and technology. Plenum Press, New York, pp 209–214

    Book  Google Scholar 

  • Henderson DK (2006) Managing methicillin-resistant staphylococci: a paradigm for preventing nosocomial transmission of resistant organisms. Am J Infect Control 34:S46–S54

    Article  PubMed  Google Scholar 

  • Jarrahpour A, Shirvani P, Sharghi H, Aberi M, Sinou V, Latour C, Brunel JM (2015) Synthesis of novel mono- and bis-Schiff bases of morpholine derivatives and the investigation of their antimalarial and antiproliferative activities. Med Chem Res 24:4105–4112

    Article  CAS  Google Scholar 

  • Kenawy E, Abdel-Hay FI, Mohy Eldin MS, Tamer TM, Ibrahim EMA (2015) Novel aminated chitosan-aromatic aldehydes Schiff bases: synthesis, characterization and bio-evaluation. IJAR 3:563–572

    CAS  Google Scholar 

  • Kerfahi D, Tripathi BM, Singh D, Kim H, Lee S, Lee J, Adams JM (2015) Effects of functionalized and raw multi-walled carbon nanotubes on soil bacterial community composition. PLoS ONE 10(3):e0123042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Chen Y, Ren X, Wu R, Barnes K, Worley SD, Broughton RM, Cho U, Kocer H, Huang TS (2007) Fabric treated with antimicrobial N-halamine epoxides. Ind Eng Chem Res 46:6425–6429

    Article  CAS  Google Scholar 

  • Malik S, Nema B (2016) Antimicrobial activities of schiff bases: a review. IJTAS 8:28–30

    CAS  Google Scholar 

  • Mazimba O, Majinda RR, Masesane IB (2011) Synthesis and antibacterial activities of cyclodimers of styrene oxides. Bull Chem Soc Ethiop 25:299–304

    Article  CAS  Google Scholar 

  • Mohamed NA, Abd El-Ghany NA (2012) Synthesis and antimicrobial activity of some novel terephthaloyl thiourea cross-linked carboxymethyl chitosan hydrogels. Cellulose 19:1879–1891

    Article  CAS  Google Scholar 

  • Mohamed NA, Abd El-Ghany NA (2017) Synthesis, characterization and antimicrobial activity of chitosan hydrazide derivative. Int J Polym Mater Polym Biomater 66:410–415

    Article  CAS  Google Scholar 

  • Mohamed NA, Abd El-Ghany NA (2018) Novel aminohydrazide cross-linked chitosan filled with multi-walled carbon nanotubes as antimicrobial agents. Int J Biol Macromol 115:651–662

    Article  CAS  PubMed  Google Scholar 

  • Mohamed NA, Al-mehbad NY (2013) Novel terephthaloyl thiourea cross-linked chitosan hydrogels as antibacterial and antifungal agents. Int J Biol Macromol 57:111–117

    Article  CAS  PubMed  Google Scholar 

  • Mohamed NA, Sabaa MW, El-Ghandour AH, Abdel-Aziz MM, Abdel-Gawad OF (2013) Quaternized N-substituted carboxymethyl chitosan derivatives as antimicrobial agents. Int J Biol Macromol 60:156–164

    Article  CAS  PubMed  Google Scholar 

  • Mohamed NA, Mohamed RR, Seoudi RS (2014) Synthesis and characterization of some novel antimicrobial thiosemicarbazone O-carboxymethyl chitosan derivatives. Int J Biol Macromol 63:163–169

    Article  CAS  PubMed  Google Scholar 

  • Mohamed NA, Abd El-Ghany NA, Fahmy MM (2016) Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels. Int J Biol Macromol 82:589–598

    Article  CAS  PubMed  Google Scholar 

  • Mohamed NA, Abd El-Ghany NA, Fahmy MM, Khalaf-Alla PA (2018) Novel polymaleimide containing dibenzoyl hydrazine pendant group as chelating agent for antimicrobial activity. Int J Polym Mater Polym Biomater 67:68–77

    Article  CAS  Google Scholar 

  • Mohan M, Gupta NS, Kumar A, Kumar M (1987) Synthesis, characterization and antitumour activity of iron(II) and iron(IlI) complexes of 3- and 5-substituted salicylaldehyde benzoyl hydrazones. Inorg Chim Acta I35:167–177

    Article  Google Scholar 

  • Munoz-B A, Fernandez-G M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37:281–339

    Article  CAS  Google Scholar 

  • Musumeci T, Puglisi G (2013) 10-Antimicrobial agents. In: Pignatello, R. (eds) Drug–Biomembrane Interaction Studies. Woodhead Publishing, Sawston, Cambridge, pp 305–333

  • Nawar N, Hosny NM (2000) Synthesis, spectral and antimicrobial activity studies of o-aminoacetophenone o-hydroxybenzoylhydrazone complexes. Trans Metal Chem 25:1–8

    Article  CAS  Google Scholar 

  • Nazzaro F, Caliendo G, Arnesi G, Veronesi A, Sarzi P, Fratianni F (2009) Comparative content of some bioactive compounds in two varieties of Capsicum annuum L. sweet pepper and evaluation of their antimicrobial and mutagenic activities. J Food Biochem 33(6):852–868

  • Oliveira CS, Airoldi C (2014) Pyridine derivative covalently bonded on chitosan pendant chains for textile dye removal. Carbohydr Polym 102:38–46

    Article  CAS  PubMed  Google Scholar 

  • Pickart L, Goodwin WH, Burgua W, Murphy TB, Johnson DK (1983) Inhibition of the growth of cultured cells and an implanted fibrosarcoma by aroylhydrazone analogs of the Gly-His-Lys-Cu (II) complex. Biochem Pharmacol 32:3868–3871

    Article  CAS  PubMed  Google Scholar 

  • Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    Article  CAS  Google Scholar 

  • Ragavendran J, Sriram D, Patel S, Reddy I, Bharathwajan N, Stables J, Yogeeswari P (2007) Design and synthesis of anticonvulsants from a combined phthalimide-GABA-anilide and hydrazone pharmacophore. Eur J Med Chem 42:146–151

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Choudhary M I, Thompson W J (2001) Bioassay techniques for drug development. Harwood Academic Publishers, The Netherlands, vol 16, p 2024

  • Rathore HS, Mittal S, Kumar S (2000) Synthesis, characterization and antifungal activities of 3d- transition metal complexes of 1-acetylpiperazinyldithiocarbamate, M(acpdtc)2. Pestic Res J 12:103–107

    Google Scholar 

  • Silverstein RM, Bassler GC, Morril TC (2000) Spectrometric identification of organic compounds, 6th edn. Wiley, New York

    Google Scholar 

  • Todeschini AR, Miranda AL, Silva CM, Parrini SC (1998) Synthesis and evaluation of analgesic, antiinflammatory and antiplatelet properties of new 2-pyridylarylhydrazone derivatives Barreiro. Eur J Med Chem 33:189–199

    Article  CAS  Google Scholar 

  • Venkatesan J, Jayakumar R, Mohandas A, Bhatnagar I, Se-K Kim (2014) Antimicrobial activity of chitosan-carbon nanotube hydrogels. Materials 7:3946–3955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicini P, Zani F, Cozzini P, Doytchinova I (2002) Hydrazones of 1,2-benzisothiazole hydrazides: synthesis, antimicrobial activity and QSAR investigations. Eur J Med Chem 37:553–564

    Article  CAS  PubMed  Google Scholar 

  • Xia D, Wu X, Shi J, Yang Q, Zhang Y (2011) Phenolic compounds from the edible seeds extract of Chinese Mei (Prunus mume Sieb. et Zucc) and their antimicrobial activity. LWT Food Sci Technol 44(1):347–349

    Article  CAS  Google Scholar 

  • Yogeshkumar NG, Atul SG, Adhikrao VY (2013) Chitosan and its applications: a review of literature. IJRPBS 4:312–331

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia A. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, N.A., Abd El-Ghany, N.A. Synthesis, characterization and antimicrobial activity of novel aminosalicylhydrazide cross linked chitosan modified with multi-walled carbon nanotubes. Cellulose 26, 1141–1156 (2019). https://doi.org/10.1007/s10570-018-2096-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2096-5

Keywords

Navigation