Skip to main content
Log in

A multistep mild process for preparation of nanocellulose from orange bagasse

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Orange bagasse in natura and industrial orange bagasse were investigated as starting materials for the production of nanocellulose under moderate chemical sequential extraction conditions. The latter accounted for acid (5% v v−1 and 100 °C) and/or alkaline conditions (NaOH 1.6–4.0% m v−1, 120 °C); and bleaching with NaClO2 (1–3% m v−1, 80 °C). Ultrasound treatment yielded very similar cellulose nanofibers with 60–70% of crystallinity and highly pure (over 98%). As seen by field emission scanning electron microscopy, cellulose nanofibers showed mean diameters of 18.4 nm ± 6.0 nm from bagasse in natura, while 20.5 nm ± 7.0 nm mean diameters were observed for the nanofibers isolated from the industrial bagasse. Crystallinity indices were determined using X-ray diffraction and solid-state nuclear magnetic resonance (CP–MAS 13C NMR) data. The obtained materials have numerous potential applications and represent a green alternative for the treatment of orange fruit biomass.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abraham E, Deepa BL, Pothan A, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulose fibres: a novel approach. Carbohydr Polym 86:1468–1475

    Article  CAS  Google Scholar 

  • Ahmed SA, Mostafa FA (2013) Utilization of orange bagasse and molokhia stalk for production of pectinase enzyme. Braz J Chem Eng 30:449–456

    Article  CAS  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  PubMed  Google Scholar 

  • AOAC. Official Methods of Analysis (2000) Association of official analytical chemists, vol 2, 17th edn. AOAC International, Gaithersburg

    Google Scholar 

  • Bicu I, Mustata F (2013) Optimization of isolation of cellulose from orange peel using sodium hydroxide and chelating agents. Carbohydr Polym 98:341–348

    Article  CAS  PubMed  Google Scholar 

  • Bilanovic D, Shelef G, Green M (1994) Xanthan fermentation of citrus waste. Bioresour Technol 48:169–172

    Article  CAS  Google Scholar 

  • Campos A, Correa AC, Cannella D, Teixeira EM, Marconcini JM, Dufresne A, Mattoso LC, Cassland P, Sanadi AR (2013) Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–1500

    Article  CAS  Google Scholar 

  • Cherian BM, Pothan LA, Nguyen-Chung T, Mennig G, Kottaisamy M, Thomas S (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fiber and characterization. J Agric Food Chem 56:5617–5627

    Article  CAS  PubMed  Google Scholar 

  • Cherian BM, Leão AL, Souza SF, Thomas S, Pothan LA, Kottaisamy M (2011) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725

    Article  CAS  Google Scholar 

  • Chimentão RJ, Lorente E, Gispert-Guirado F, Medina F, López F (2014) Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions. Carbohydr Polym 111:116–124

    Article  CAS  PubMed  Google Scholar 

  • Duchemin BJC (2015) Mercerization of cellulose in aqueous NaOH at low concentrations. Green Chem 17:3941–3947

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Ge X, Xu Y, Chen X, Zhang L (2014) Improvement of l-lactic acid production from orange peels in mixed culture system. J Glob Biosci 3:354–360

    Google Scholar 

  • Habibi Y, Lucia AL, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Hult E, Liitiä T, Maunu SL, Hortling B, Iversen TA (2002) CP/MAS 13C-NMR study of cellulose structure on the surface of refined kraft pulp fibers. Carbohydr Polym 49:231–234

    Article  CAS  Google Scholar 

  • Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci. https://doi.org/10.1155/2011/837875

    Article  Google Scholar 

  • Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose 21:3409–3426

    Article  CAS  Google Scholar 

  • Li Q, Siles JA, Thompson IP (2010) Succinic acid production from orange peel and wheat straw by batch fermentation of Fibrobacter succinogenes S85. Appl Microbiol Biotechnol 88:671–678

    Article  CAS  PubMed  Google Scholar 

  • Mariño M, Lopes L, Durán N, Tasic L (2015) Enhanced materials from nature: nanocellulose from citrus waste. Molecules 20:5908–5923

    Article  CAS  PubMed  Google Scholar 

  • Mittal A, Katahira R, Himmel M, Johnson D (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:41–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9

    Article  CAS  PubMed  Google Scholar 

  • Nigam PS, Pandey A (2009) Production of organic acids from agro-industrial residues. In: Singh P, Pandey A (eds) Biotechnology for agro-industrial residues utilisation—utilization of agro-residues. Springer, Basingstoke, pp 37–60

    Chapter  Google Scholar 

  • Oberoi HS, Vadlani PV, Madl RL, Saida L, Abeykoon JP (2010) Ethanol production from orange peels: two-stages hydrolysis and fermentation studies using optimized parameters through experimental design. J Agric Food Chem 58:3422–3429

    Article  CAS  PubMed  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulose performing. Biotechnol Fuels 3:2–10

    Google Scholar 

  • Peng F, Bian J, Peng P, Guan Y, Xu F, Sun R (2012) Fractional separation and structural features of hemicelluloses from sweet sorghum leaves. Bioresources 7:4744–4759

    Article  Google Scholar 

  • Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392

    Article  CAS  Google Scholar 

  • Rao MK, Kumar A, Han SS (2017) Polysaccharide based bionanocomposite hydrogels reinforced with cellulose nanocrystals: drug release and biocompatibility analyses. Int J Biol Macromol 101:165–171

    Article  CAS  Google Scholar 

  • Rezzadori K, Benedetti S, Amante ER (2012) Proposals for the residues recovery: orange bagasse as raw material for products. Food Bioprod Process 9:606–614

    Article  CAS  Google Scholar 

  • Rivas B, Torrado A, Torre P, Converti A, Domínguez JM (2008) Submerged citric acid fermentation in orange peel autohydrolysate. J Agric Food Chem 56:2380–2387

    Article  CAS  PubMed  Google Scholar 

  • Segal L, Creely J, Martin A, Conrad C (1962) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  Google Scholar 

  • Sudhakar DV, Maini SB (2000) Isolation and characterization of mango peel pectins. J Food Process Preserv 24:209–227

    Article  CAS  Google Scholar 

  • Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose I structure studied by X-day diffraction (WAXD): comparison between measurement techniques. Lenzing Ber 89:118–131

    CAS  Google Scholar 

  • Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576

    Article  CAS  Google Scholar 

  • U.S. Department of Agriculture, Foreign Agricultural Service (2017) Citrus: world markets and trade. http://www.fas.usda.gov. Accessed 8 Mar 2017

  • Vanderhart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17:1465–1472

    Article  CAS  Google Scholar 

  • Voisin H, Bergström L, Liu P, Mathew AP (2017) Nanocellulose-based materials for water purification. Nanomaterials 7:57–74

    Article  CAS  PubMed Central  Google Scholar 

  • Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystal vs cellulose nanofibrils: a comparative on their microstructures and effects as polymer reinforcing agents. Appl Mater Interfaces 5:2999–3009

    Article  CAS  Google Scholar 

  • Zhao H, Kwak JH, Wang Y, Frank JA, White JM, Holladay JE (2006) Effect of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy Fuel 20:807–811

    Article  CAS  Google Scholar 

  • Zuluaga R, Putaux JL, Cruz J, Vélez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76:51–59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank funding agencies: Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES), Conselho Nacional de Pesquisa (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljubica Tasic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariño, M.A., Rezende, C.A. & Tasic, L. A multistep mild process for preparation of nanocellulose from orange bagasse. Cellulose 25, 5739–5750 (2018). https://doi.org/10.1007/s10570-018-1977-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1977-y

Keywords

Navigation