Skip to main content

Advertisement

Log in

Key role of anionic trash catching system on the efficiency of lignocellulose nanofibers in industrial recycled slurries

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The processing of recycled paper into packaging materials is becoming one of the most important activities of paper mills. However, the use of recycled paper as a raw material causes an important increase of dissolved colloidal substances in industrial waters, known as anionic trash, which greatly increases water conductivity and cationic demand disturbing the function of commonly used retention agents (cationic starch, cationic polyacrylamides). On the other hand, several investigators showed that lignocellulosic nanofibers (LCNF) can be used as reinforcement in papermaking, but their retention can be affected by anionic trash. This work aims to study the technical viability of the application of triticale straw lignocellulose nanofibers in recycled fiber suspensions at industrial scale. For this purpose, a complex retention system of LCNF was proposed to improve the reinforcement efficiency of LCNF. Results show that, with the addition of only 1.5% (w/w) of LCNF, it is possible to fulfill the physical–mechanical requirements of the commercial test liner, and the addition of 4.5% of LCNF would allow the reduction of basis weight and additives or the development of applications with higher mechanical requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afra E, Yousefi H, Hadilam MM, Nishino T (2013) Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. Carbohydr Polym 97(2):725–730. https://doi.org/10.1016/j.carbpol.2013.05.032

    Article  CAS  PubMed  Google Scholar 

  • Bledzki AK, Gassan J (1996) Important properties of colloidal silica in microparticulate systems. Nord Pulp Pap Res J 11(1):15–21

    Article  Google Scholar 

  • Boufi S, Gandini A (2015) Triticale crop residue: a cheap material for high performance nanofibrillated cellulose. RSC Adv 5(5):3141–3151. https://doi.org/10.1039/C4RA12918K

    Article  CAS  Google Scholar 

  • Boufi S, González I, Delgado-aguilar M, Tarrés Q, Pèlach MÀ, Mutjé P (2016) Nanofibrillated cellulose as an additive in papermaking process : A review. Carbohydr Polym 154:151–166

    Article  CAS  Google Scholar 

  • Carrasco F, Mutje P, Pelach MA (1998) Control of retention in paper-making by colloid titration and zeta potential techniques. Wood Sci Technol 32(2):145–155

    Article  CAS  Google Scholar 

  • Delgado-Aguilar M, González I, Pèlach MA, De La Fuente E, Negro C, Mutjé P (2015a) Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 22(1):789–802. https://doi.org/10.1007/s10570-014-0473-2

    Article  CAS  Google Scholar 

  • Delgado-aguilar M, González I, Tarrés Q, Alcalà M, Pèlach MÀ (2015b) Approaching a low-cost production of cellulose nanofibers for papermaking applications. BioResourses 10(3):5345–5355

    CAS  Google Scholar 

  • Delgado-Aguilar M, Tarrés Q, Puig J, Boufi S, Blanco A, Mutjé P (2015c) Enzymatic refining and cellulose nanofiber addition in papermaking processes from recycled and deinked slurries. BioResources 10(3):5730–5743

    CAS  Google Scholar 

  • Delgado-Aguilar M, González I, Tarrés Q, Pèlach MA, Alcalà M, Mutjé P (2016) The key role of lignin in the production of low-cost lignocellulosic nanofibers for papermaking applications. Ind Crops Prod 86:295–300. https://doi.org/10.1016/j.indcrop.2016.04.010

    Article  CAS  Google Scholar 

  • Desharnais L, Chabot B, Daneault C, Montplaisir D, Croteau L (2002) Thermomechanical pulp washing effect of retention and drainage. Pulp Pap Can 103(4):44–48

    CAS  Google Scholar 

  • Dunham AJ, Sherman LM, Alfano JC (2002) Effect of dissolved and colloidal substances on drainage properties of mechanical pulp suspensions. J Pulp Pap Sci 28(9):298–304

    CAS  Google Scholar 

  • Espinosa E, Tarrés Q, Delgado-Aguilar M, González I, Mutjé P, Rodríguez A (2016) Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose. https://doi.org/10.1007/s10570-015-0807-8

    Article  Google Scholar 

  • Fernandes Diniz J, Gil MH, Castro JAAM (2004) Hornification—its origin and interpretation in wood pulps. Wood Sci Technol 37:489–494. https://doi.org/10.1007/s00226-003-0216-2

    Article  CAS  Google Scholar 

  • Garver TM, Xie T, Boegh KH (1997) Variation of white water composition in a TMP and DIP newsprint paper machine. Tappi J 80(8):163–173

    CAS  Google Scholar 

  • Gill RIS (1996) Chemical control of deposits: scopes and limitations. Pap Technol 37(6):23–31

    CAS  Google Scholar 

  • González I, Boufi S, Pèlach MA, Alcalà M, Vilaseca F, Mutjé P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7(4):5167–5180

    Article  Google Scholar 

  • Hietala M, Ämmälä A, Silvennoinen J, Liimatainen H (2015) Fluting medium strengthened by periodate–chlorite oxidized nanofibrillated celluloses. Cellul. https://doi.org/10.1007/s10570-015-0801-1

    Article  Google Scholar 

  • Hubbe MA (2014) Prospects for maintaining strength of paper and paperboard products while using less forest resources: A review. BioResources 9(1):1634–1763

    Google Scholar 

  • Hubbe MA, Venditti RA, Rojas OJ (2007) What happens to cellulosic fibers during papermaking and recycling? A Review. BioResourse 2:739–788

    CAS  Google Scholar 

  • Hubbe MA, Sundberg A, Mocchiutti P, Ni Y, Pelton R (2012) Dissolved and colloidal substances (dcs) and the charge demand of papermaking process waters and suspensions: a review. BioResources 7(4):6109–6193

    Google Scholar 

  • Hurter RW (2002a) Nonwood fiber content papers-Part1: Corrugating medium physical properties. HurterConsult

  • Hurter RW (2002b) Nonwood fiber content papers-Part2: Unbleached papers physical properties. HurterConsult

  • ISO (1990) ISO 187:1990: Paper, board and pulps—Standard atmosphere for conditioning and testing and procedure for monitoring the atmosphere and conditioning of samples

  • ISO (1999) ISO 5267-1:1999: Pulps—Determination of drainability—Part 1: Schopper-riegler method

  • ISO. (2008a). ISO 1924-2:2008: Paper and board—Determination of tensile properties—Part 2: constant rate of elongation method (20 mm/min)

  • ISO (2008b) ISO 5269-2:2004 Pulps—Preparation of laboratory sheets for physical testing—Part 2: Rapid-Köthen method

  • ISO. (2011). ISO 534:2011: Paper and board—Determination of thickness, density and specific volume

  • ISO. (2012). ISO 1974:2012: Paper—Determination tearing resistance—Elmendorf method

  • ISO. (2013). ISO 5636-5:2013: Paper and board—Determination of air permeance (medium range)—Part 5: Gurley method

  • ISO. (2014). ISO 2758:2014: Paper—Determination of bursting strength

  • Korhonen MH, Laine J (2014) Flocculation and retention of fillers with nanoceluloses. Nord Pulp Pap Res J 29(1):119–128

    Article  CAS  Google Scholar 

  • Lourenço AF, Gamelas JAF, Nunes T, Amaral J, Mutjé P, Ferreira PJ (2017) Influence of TEMPO-oxidised cellulose nanofibrils on the properties of filler-containing papers. Cellulose 24(1):349–362. https://doi.org/10.1007/s10570-016-1121-9

    Article  CAS  Google Scholar 

  • Miao Q, Huang L, Chen L (2013) Advances in the control of dissolved and colloidal substances present in papermaking processes: a brief review. BioResources 8(1):1431–1455

    Google Scholar 

  • Neimo L (1999) Papermaking Chemistry. In: Gullichsen J, Paulapuro H (eds). Jyväskylä: Fapet Oy

  • Pöyry (2011) Average papermaking fibre furnish the world 1990–2025. Pulp and RP Consumption 1995–2025, World Fibre Outlook, Pöyry LLC

  • Rouger J, Mutje P (1984) Correlation between the cellulose fibres beating and the fixation of a soluble cationic polymer. Br Polym J 16(2):83–86

    Article  CAS  Google Scholar 

  • Salmi J (2009) Surface interactions in polyelectrolyte-cellulose systems and their implications for flocculation mechanisms. Helsinki University of Technology, TKK

    Google Scholar 

  • Sehaqui H, Zhou Q, Berglund LA (2013) Nanofibrillated cellulose for enhancement of strength in high-density paper structures. Nord Pulp Pap Res J 28(2):182–189. https://doi.org/10.3183/NPPRJ-2013-28-

    Article  CAS  Google Scholar 

  • Shetty CS, Greer CS, Laubach GD (1994) A likely mechanism for pitch deposition control. Tappi J 77(10):91–96

    CAS  Google Scholar 

  • Swerin A, Ödberg L (1996) Flocculation of cellulosic fibre suspensions by a microparticulate retention aid system consisting of cationic polyacrylamide and anionic montmotillonite. Nord Pulp Pap Res J 11(1):22–27

    Article  CAS  Google Scholar 

  • Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17(5):1005–1020. https://doi.org/10.1007/s10570-010-9431-9

    Article  CAS  Google Scholar 

  • TAPPI (2014) T569 om-14: internal bond strength (Scott type)

  • Tarrés Q, Saguer E, Pèlach MA, Alcalà M, Delgado-Aguilar M, Mutjé P (2016) The feasibility of incorporating cellulose micro/nanofibers in papermaking processes: the relevance of enzymatic hydrolysis. Cellulose. https://doi.org/10.1007/s10570-016-0889-y

    Article  Google Scholar 

  • Tarrés Q, Ehman NV, Evangelina M, Area MC, Delgado-aguilar M, Mutjé P (2017) Lignocellulosic nanofibers from triticale straw: the influence of hemicelluloses and lignin in their production and properties. Carbohyd Polym 163:20–27. https://doi.org/10.1016/j.carbpol.2017.01.017

    Article  CAS  Google Scholar 

  • Wang Y, Ni J, Chen C, Peng J, Liu H (2014) Anionic trash control in high-yield pulp (HYP) containing furnish by using a poly-DADMAC based commercial formulation. J Ind Eng Chem 20(6):4452–4456. https://doi.org/10.1016/j.jiec.2014.02.016

    Article  CAS  Google Scholar 

  • Whipple WL, Maltesh C (2002) Adsorption of cationic flocculants to paper slurries. J Colloid Interface Sci 256(1):33–40. https://doi.org/10.1006/jcis.2001.7867

    Article  CAS  Google Scholar 

  • Zhang X, Beatson RP, Cai YJ, Saddler JN (1999) Accumulation of specific dissolved and colloidal substances during white water recycling affects paper properties. J Pulp Pap Sci 25(6):206–210

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the Economy and Competitiveness Ministry of the Spanish Government by the project CTQ2013–48090–C2–2–R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quim Tarrés.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarrés, Q., Area, M.C., Vallejos, M.E. et al. Key role of anionic trash catching system on the efficiency of lignocellulose nanofibers in industrial recycled slurries. Cellulose 25, 357–366 (2018). https://doi.org/10.1007/s10570-017-1589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1589-y

Keywords

Navigation