Skip to main content

Advertisement

Log in

Microfibrillated cellulose foams obtained by a straightforward freeze–thawing–drying procedure

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Microfibrillated cellulose (MFC) is continuously gaining attention due to its outstanding mechanical properties, in particular high strength-to-weight ratio. Recently, more and more studies target the production of porous materials, such as foams, out of this natural resource. Commonly, an energy-consuming freeze–drying method is utilized for producing pure MFC porous structures from water-based suspensions, which renders these products particularly unattractive for industry. Although alternatives for foam production have been proposed, using either modified MFC or with various additives, the freeze–drying step is still one of the most critical bottle-neck of MFC foam production upscaling. A novel straightforward freeze–thawing–drying procedure assisted by the common additive urea was herein proposed. Such method allows the production of mechanically stable, lightweight MFC structures under low-cost ambient conditions drying. The influence of the cellulose fibril characteristics, the suspension formulation and the process parameters on the final foam properties have been studied in terms of porosity, density and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Adapted from Donius et al. (2014)

Similar content being viewed by others

References

  • Alimadadi M, Uesaka T (2016) 3D-oriented fiber networks made by foam forming. Cellulose 23:661–671. doi:10.1007/s10570-015-0811-z

    Article  CAS  Google Scholar 

  • Azerraf C, Braslavsky I, Lapidot S, Roth Shalev S, Shoseyov O, Slattegard R, Yashunsky V (2015) Porous structure used for article, consists of unidirectionally oriented partially interconnected sheets comprising nanocrystalline cellulose and/or microfibrillar cellulose as cellulose-based material. WO2015114630-A1

  • Blaker JJ, Lee KY, Mantalaris A, Bismarck A (2010) Ice-microsphere templating to produce highly porous nanocomposite PLA matrix scaffolds with pores selectively lined by bacterial cellulose nano-whiskers. Compos Sci Technol 70:1879–1888. doi:10.1016/j.compscitech.2010.05.028

    Article  CAS  Google Scholar 

  • Butylina S, Geng S, Oksman K (2016) Properties of as-prepared and freeze–dried hydrogels made from poly(vinyl alcohol) and cellulose nanocrystals using freeze–thaw technique. Eur Polym J. doi:10.1016/j.eurpolymj.2016.06.028

    Google Scholar 

  • Cervin NT, Andersson L, Ng JBS, Olin P, Bergstrom L, Wagberg L (2013) Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose. Biomacromol 14:503–511. doi:10.1021/bm301755u

    Article  CAS  Google Scholar 

  • Dash R, Li Y, Ragauskas AJ (2012) Cellulose nanowhisker foams by freeze casting. Carbohyd Polym 88:789–792. doi:10.1016/j.carbpol.2011.12.035

    Article  CAS  Google Scholar 

  • Deville S (2008) Freeze-casting of porous ceramics: a review of current achievements and issues. Adv Eng Mater 10:155–169. doi:10.1002/adem.200700270

    Article  CAS  Google Scholar 

  • Deville S (2013) Ice-templating, freeze casting: beyond materials processing. J Mater Res 28:2202–2219. doi:10.1557/jmr.2013.105

    Article  CAS  Google Scholar 

  • Donius AE, Liu A, Berglund LA, Wegst UGK (2014) Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting. J Mech Behav Biomed Mater 37:88–99. doi:10.1016/j.jmbbm.2014.05.012

    Article  CAS  Google Scholar 

  • Doube M et al (2010) BoneJ: free and extensible bone image analysis. ImageJ Bone 47:1076–1079. doi:10.1016/j.bone.2010.08.023

    Article  Google Scholar 

  • Dougherty R, Kunzelmann K-H (2007) Computing local thickness of 3D structures with ImageJ. Microsc Microanal 13:1678–1679. doi:10.1017/S1431927607074430

    Article  Google Scholar 

  • Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1:612–619. doi:10.1364/JOSAA.1.000612

    Article  Google Scholar 

  • Flauder S, Heinze T, Müller F (2014) Cellulose scaffolds with an aligned and open porosity fabricated via ice-templating. Cellulose 21:97–103. doi:10.1007/s10570-013-0119-9

    Article  CAS  Google Scholar 

  • Friedberg Norman D, Adams Frank S (1970) Method for drying a wet foam containing cellulosic fibers. US Patent US 3542640 A, 1970/11/24

  • Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. In: Clarke DR, Suresh S, Ward IM (eds) Cambridge solid state science series, 2nd edn (with corrections). Cambridge: Cambridge University Press. ISBN 9780521499118

  • Hazra A, Paul S, De UK, Kar S, Goswami K (2006) Study of ice nucleation/hydrate crystallisation over urea. Nova Science Publishers, New York

    Google Scholar 

  • Hildebrand T, Rüegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75. doi:10.1046/j.1365-2818.1997.1340694.x

    Article  Google Scholar 

  • Johansson E, Tchang Cervin N, Gordeyeva K, Bergström L, Wagberg L-E (2016) CNF cellular solid material. WO Patent WO 2016/068771 A1, 2016/05/06

  • Josset S, Orsolini P, Siqueira G, Tejado A, Tingaut P, Zimmermann T (2014) Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process. Nord Pulp Pap Res J 29:167–175

    Article  CAS  Google Scholar 

  • Kangas H, Lahtinen P, Sneck A, Saariaho A-M, Laitinen O, Hellen E (2014) Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods. Nordic Pulp Paper Res J 29:129–143

    Article  CAS  Google Scholar 

  • Koehnke T, Lin A, Elder T, Theliander H, Ragauskas AJ (2012) Nanoreinforced xylan-cellulose composite foams by freeze-casting. Green Chem 14:1864–1869. doi:10.1039/c2gc35413f

    Article  CAS  Google Scholar 

  • Koehnke T, Elder T, Theliander H, Ragauskas AJ (2014) Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohyd Polym 100:24–30. doi:10.1016/j.carbpol.2013.03.060

    Article  Google Scholar 

  • Korehei R, Jahangiri P, Nikbakht A, Martinez M, Olson J (2016) Effects of drying strategies and microfibrillated cellulose fiber content on the properties of foam-formed paper. J Wood Chem Technol 36:235–249. doi:10.1080/02773813.2015.1116012

    Article  CAS  Google Scholar 

  • Lee J (2011) Deng YL (2011) The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter 7:11547

    Google Scholar 

  • Li WL, Lu K, Walz JY (2012) Freeze casting of porous materials: review of critical factors in microstructure evolution. Int Mater Rev 57:37–60. doi:10.1179/1743280411y.0000000011

    Article  CAS  Google Scholar 

  • Martoïa F, Cochereau T, Dumont PJJ, Orgéas L, Terrien M, Belgacem MN (2016) Cellulose nanofibril foams: links between ice-templating conditions, microstructures and mechanical properties. Mater Des. doi:10.1016/j.matdes.2016.04.088

    Google Scholar 

  • Ming Chih C (1960) Manufacture of regenerated cellulose sponge material. US Patent US 2927034 A, 1960/03/01

  • Münch B (2014) Empa bundle of ImageJ Plugins for image analysis (EBIPIA). http://wiki.imagej.net/Xlib

  • Münch B, Holzer L (2008) Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion. J Am Ceram Soc 91:4059–4067. doi:10.1111/j.1551-2916.2008.02736.x

    Article  Google Scholar 

  • O’Brien FJ, Harley BA, Yannas IV, Gibson L (2004) Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25:1077–1086. doi:10.1016/s0142-9612(03)00630-6

    Article  Google Scholar 

  • Paakko M et al (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499. doi:10.1039/B810371B

    Article  CAS  Google Scholar 

  • Pawelec KM, Husmann A, Best SM, Cameron RE (2014) Ice-templated structures for biomedical tissue repair: from physics to final scaffolds. Appl Phys Rev. doi:10.1063/1.4871083

    Google Scholar 

  • Rempel AW, Worster MG (1999) The interaction between a particle and an advancing solidification front. J Cryst Growth 205:427–440. doi:10.1016/S0022-0248(99)00290-0

    Article  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  • Sehaqui H, Salajkova M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832. doi:10.1039/b927505c

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599. doi:10.1016/j.compscitech.2011.07.003

    Article  CAS  Google Scholar 

  • Srinivasa P, Kulachenko A, Aulin C (2015) Experimental characterisation of nanofibrillated cellulose foams. Cellulose 22:3739–3753. doi:10.1007/s10570-015-0753-5

    Article  CAS  Google Scholar 

  • Torquato S (2002) Sections 2.6 and 12.5.4. In: Random heterogeneous materials—microstructure and macroscopic properties. Springer: New York

  • Weise U (1998) Hornification—mechanisms and terminology. Paperi Ja Puu Paper Timber 80:110–115

    Google Scholar 

  • Xiong B, Zhao P, Hu K, Zhang L, Cheng G (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21:1183–1192. doi:10.1007/s10570-014-0221-7

    Article  CAS  Google Scholar 

  • Zhang HF, Hussain I, Brust M, Butler MF, Rannard SP, Cooper AI (2005) Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat Mater 4:787–793. doi:10.1038/nmat1487

    Article  CAS  Google Scholar 

  • Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668. doi:10.1021/cm5004164

    Article  CAS  Google Scholar 

  • Zhang Z, Tingaut P, Rentsch D, Zimmermann T, Sebe G (2015) Controlled silylation of nanofibrillated cellulose in water: reinforcement of a model polydimethylsiloxane network. Chemsuschem 8:2681–2690. doi:10.1002/cssc.201500525

    Article  CAS  Google Scholar 

  • ZRA (2016) Accessed June 2017. http://www.empa.ch/web/empa/center-for-x-ray-analytics

Download references

Acknowledgments

The authors would like to thank Esther Strub (Applied Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), Duebendorf, Switzerland.) and Anja Huch (Applied Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), Duebendorf, Switzerland.) for the SEM microscopy, Daniel Heer (Applied Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), Duebendorf, Switzerland.) and Hans Michel (Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology (Empa), Duebendorf, Switzerland.) for the compression tests, as well as the company Stendal (Berlin, Germany) for providing the ECF fibers. Part of this work has been performed by the use of the Empa Platform for Image Analysis (http://empa.ch/web/s499/software-/-imaging-platform) at Empa’s Center for X-ray Analytics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Geiger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 642 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Josset, S., Hansen, L., Orsolini, P. et al. Microfibrillated cellulose foams obtained by a straightforward freeze–thawing–drying procedure. Cellulose 24, 3825–3842 (2017). https://doi.org/10.1007/s10570-017-1377-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1377-8

Keywords

Navigation