Skip to main content
Log in

Size, shape, orientation and crystallinity of cellulose Iβ by X-ray powder diffraction using a free spreadsheet program

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

X-ray powder diffraction is one of the most commonly used methods in cellulose science. This technique is used to identify the cellulose allomorphs, their crystallinity, and the size of their crystallites. In this paper, a novel model is introduced that implicitly takes into account the shape and size of cellulose Iβ crystallites in the interpretation of powder diffractograms. Because of the limited amount of data in cellulose powder patterns, this model focuses on a small number of adjustable parameters. The method hypothesizes that cellulose Iβ crystallites are straight crystalline rods with superelliptical cross-sections. This superellipse is a parametric curve that can, for example, describe various crystallite shapes as rectangles or ellipses. Additionally, preferred orientation along the (0 0 1) crystallographic planes can be modelled using the March–Dollase approach. The simulated background has a semi-empirical form. An initial model comprised cellulose Iβ crystallites and the amorphous background. A second model comprised a biphasic distribution of crystallites and the same amorphous background. In this second model, large cellulose Iβ crystallites coexisted with more slender crystallites, usually less than 20 Å in lateral size. Cellulose IVI nanocrystals were selected as a modeling construct to represent these small and distorted forms of native cellulose. Both models produced simulations in excellent agreement with the experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086

    Article  CAS  Google Scholar 

  • Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2010) Multivariate statistical analysis of X-ray data from cellulose: a new method to determine degree of crystallinity and predict hydrolysis rates. Bioresour Technol 101:4461–4471

    Article  CAS  Google Scholar 

  • Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization. Ind Eng Chem 48:333–335

    Article  CAS  Google Scholar 

  • Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557

    Article  CAS  Google Scholar 

  • Bu L, Himmel ME, Crowley MF (2015) The molecular origins of twist in cellulose I-beta. Carbohydr Polym 125:146–152

    Article  CAS  Google Scholar 

  • De Figueiredo LP, Ferreira FF (2014) The Rietveld method as a tool to quantify the amorphous amount of microcrystalline cellulose. J Pharm Sci 103:1394–1399

    Article  Google Scholar 

  • Ding S-Y, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606

    Article  CAS  Google Scholar 

  • Ding S-Y, Zhao S, Zeng Y (2013) Size, shape, and arrangement of native cellulose fibrils in maize cell walls. Cellulose 21:863–871

    Article  Google Scholar 

  • Dollase WA (1986) Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J Appl Crystallogr 19:267–272

    Article  CAS  Google Scholar 

  • Dong S, Bortner MJ, Roman M (2016) Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study. Ind Crops Prod 93:76–87

    Article  CAS  Google Scholar 

  • Driemeier C (2014) Two-dimensional Rietveld analysis of celluloses from higher plants. Cellulose 21:1065–1073

    Article  CAS  Google Scholar 

  • Driemeier C, Bragatto J (2013) Crystallite width determines monolayer hydration across a wide spectrum of celluloses isolated from plants. J Phys Chem B 117:415–421

    Article  CAS  Google Scholar 

  • Driemeier C, Calligaris GA (2010) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Crystallogr 44:184–192

    Article  Google Scholar 

  • Driemeier C, Santos WD, Buckeridge MS (2012) Cellulose crystals in fibrovascular bundles of sugarcane culms: orientation, size, distortion, and variability. Cellulose 19:1507–1515

    Article  CAS  Google Scholar 

  • Duchemin BJC (2015) Mercerisation of cellulose in aqueous NaOH at low concentrations. Green Chem 17:3941–3947

    Article  CAS  Google Scholar 

  • Duchemin B, Newman R, Staiger M (2007) Phase transformations in microcrystalline cellulose due to partial dissolution. Cellulose 14:311–320

    Article  CAS  Google Scholar 

  • Duchemin B, Thuault A, Vicente A, Rigaud B, Fernandez C, Eve S (2012) Ultrastructure of cellulose crystallites in flax textile fibres. Cellulose 19:1837–1854

    Article  CAS  Google Scholar 

  • Duchemin B, Corre DL, Leray N, Dufresne A, Staiger MP (2015) All-cellulose composites based on microfibrillated cellulose and filter paper via a NaOH-urea solvent system. Cellulose 23:1–17

    Google Scholar 

  • Fink H-P, Philipp B, Paul D, Serimaa R, Paakkari T (1987) The structure of amorphous cellulose as revealed by wide-angle X-ray scattering. Polymer 28:1265–1270

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2012) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588

    Article  Google Scholar 

  • Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVII. Can J Chem 63:173–180

    Article  CAS  Google Scholar 

  • Gjønnes J, Norman N (1958) The use of half width and position of the lines in the X-ray diffractograms of native cellulose to characterize the structural properties of the samples. Acta Chem Scand 12:2028–2033

    Article  Google Scholar 

  • Guinier A (1963) X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. W. H. Freeman and Company, San Francisco

    Google Scholar 

  • Hadden JA, French AD, Woods RJ (2013) Effect of microfibril twisting on theoretical powder diffraction patterns of cellulose Iβ. Cellulose 21:879–884

    Article  Google Scholar 

  • Hearle JW (1963) The development of ideas of fine structure. The Textile Institute, London

    Book  Google Scholar 

  • Hermans PH, Weidinger A (1948) Quantitative X-ray investigations on the crystallinity of cellulose fibers. A background analysis. J Appl Phys 19:491–506

    Article  CAS  Google Scholar 

  • Hosemann R, Hentschel MP, Baltacalleja FJ, Cabarcos EL, Hindeleh AM (1985) The alpha-star-constant, equilibrium state and bearing net planes in polymers, bio-polymers and catalysts. J Phys C-Solid State Phys 18:961–971

    Article  CAS  Google Scholar 

  • Isogai A (1989) Solid-state CP/MAS 13C NMR study of cellulose polymorphs. Macromolecules 22:3168–3172

    Article  CAS  Google Scholar 

  • Ju X, Bowden M, Brown EE, Zhang X (2015) An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr Polym 123:476–481

    Article  CAS  Google Scholar 

  • Kouris M, Ruck H, Mason SG (1958) The effect of water removal on the crystallinity of cellulose. Can J Chem 36:931–948

    Article  CAS  Google Scholar 

  • Kulshreshtha AK (1979) A review of the literature on the formation of cellulose IV, its structure, and its significance in the technology of rayon manufacture. J Text Inst 70:13–18

    Article  CAS  Google Scholar 

  • Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose Iβ and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12:551–562

    Article  CAS  Google Scholar 

  • Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25

    Article  CAS  Google Scholar 

  • Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100:484–489

    Article  Google Scholar 

  • Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015

    Article  Google Scholar 

  • Li Q, Renneckar S (2011) Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromol 12:650–659

    Article  CAS  Google Scholar 

  • Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, Streek JV, Wood PA (2008) Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470

    Article  CAS  Google Scholar 

  • Maier G, Zipper P, Stubicar M, Schurz J (2005) Amorphization of different cellulose samples by ball milling. Cell Chem Tech 39:167–177

    CAS  Google Scholar 

  • Mann J (1962) Modern methods of determining crystallinity in cellulose. Pure Appl Chem 5:91–105

    Article  CAS  Google Scholar 

  • Mitra GB, Mukherjee PS (1980) X-ray diffraction study of fibrous polymers. I. Degree of paracrystallinity—a new parameter for characterizing fibrous polymers. Polymer 21:1403–1409

    Article  CAS  Google Scholar 

  • Mitra GB, Mukherjee PS (1981) Application of the method of moments to X-ray diffraction line profiles from paracrystals: native cellulose fibres. J Appl Crystallogr 14:421–431

    Article  CAS  Google Scholar 

  • Mukherjee PS, Mitra GB (1983) Anisotropy of X-ray structural parameters of the three phase model in cellulose I. Polymer 24:525–528

    Article  CAS  Google Scholar 

  • Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9

    Article  CAS  Google Scholar 

  • Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magn Reson 15:21–29

    Article  CAS  Google Scholar 

  • Newman RH (2008) Simulation of X-ray diffractograms relevant to the purported polymorphs cellulose IVI and IVII. Cellulose 15:769–778

    Article  CAS  Google Scholar 

  • Newman RH, Hill SJ, Harris PJ (2013) Wide-angle X-Ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163:1558–1567

    Article  CAS  Google Scholar 

  • Niimura H, Yokoyama T, Kimura S, Matsumoto Y, Kuga S (2010) AFM observation of ultrathin microfibrils in fruit tissues. Cellulose 17:13–18

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fibre diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromol 9:3133–3140

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19:319–336

    Article  CAS  Google Scholar 

  • Oehme DP, Doblin MS, Wagner J, Bacic A, Downton MT, Gidley MJ (2015) Gaining insight into cell wall cellulose macrofibril organisation by simulating microfibril adsorption. Cellulose 22:3501–3520

    Article  CAS  Google Scholar 

  • Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  • Popa NC, Balzar D (2008) Size-broadening anisotropy in whole powder pattern fitting. Application to zinc oxide and interpretation of the apparent crystallites in terms of physical models. J Appl Crystallogr 41:615–627

    Article  CAS  Google Scholar 

  • Preston RD (1974) The physical biology of plant cell walls. Chapman and Hall, London

    Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  CAS  Google Scholar 

  • Ruland W (1964) The separation of coherent and incoherent Compton X-ray scattering. Br J Appl Phys 15:1301

    Article  CAS  Google Scholar 

  • Segal L, Nelson ML, Conrad CM (1951) Experiments on the reduction of the crystallinity of cotton cellulose. J Phys Colloid Chem 55:325–336

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Sonneveld EJ, Visser JW (1975) Automatic collection of powder data from photographs. J Appl Crystallogr 8:1–7

    Article  Google Scholar 

  • Spraget HWG (1989) Spreadsheet simulation of X-ray powder diffraction. Comput Educ 13:101–108

    Article  Google Scholar 

  • Stephens PW (1999) Phenomenological model of anisotropic peak broadening in powder diffraction. J Appl Crystallogr 32:281–289

    Article  CAS  Google Scholar 

  • Takahashi M, Ookubo M (1994) CP/MAS 13C NMR and WAXS studies on the effects of starting cellulose materials on transition between cellulose polymorphs. Kobunshi Ronbunshu 51:107–113

    Article  CAS  Google Scholar 

  • Thomas LH, Forsyth VT, Šturcová A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161:465–476

    Article  CAS  Google Scholar 

  • Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576

    Article  CAS  Google Scholar 

  • Tsuda Y, Mukoyama S (1957) The formation of cellulose IV in the viscose spinning. Bull Chem Soc Jpn 30:718–720

    Article  CAS  Google Scholar 

  • Viëtor RJ, Mazeau K, Lakin M, Pérez S (2000) A priori crystal structure prediction of native celluloses. Biopolymers 54:342–354

    Article  Google Scholar 

  • Vonk CG (1973) Computerization of Ruland’s X-ray method for determination of the crystallinity in polymers. J Appl Crystallogr 6:148–152

    Article  CAS  Google Scholar 

  • Wada M, Sugiyama J, Okano T (1993) Native celluloses on the basis of two crystalline phase (Iα/Iβ) system. J Appl Polym Sci 49:1491–1496

    Article  CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (2001) Allomorphs of native crystalline cellulose I evaluated by two equatoriald-spacings. J. Wood Sci 47:124–128

    Article  CAS  Google Scholar 

  • Wada M, Heux L, Sugiyama J (2004) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromolecules 5:1385–1391

    Article  CAS  Google Scholar 

  • Wakelin JH, Virgin HS, Crystal E (1959) Development and comparison of two X-Ray methods for determining the crystallinity of cotton cellulose. J Appl Phys 30:1654–1662

    Article  CAS  Google Scholar 

  • Wang Y, Chan SLI, Amal R, Shen YR, Kiatkittipong K (2011) XRD anisotropic broadening of nano-crystallites. International Centre for Diffraction Data. http://www.icdd.com/resources/axa/VOL54/V54_12.pdf. Accessed 12 May 2017

  • Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129

    Article  CAS  Google Scholar 

  • Yoshiharu N, Shigenori K, Masahisa W, Takeshi O (1997) Cellulose microcrystal film of high uniaxial orientation. Macromolecules 30:6395–6397

    Article  CAS  Google Scholar 

  • Yue Y, Han J, Han G, Zhang Q, French AD, Wu Q (2015) Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: morphology, crystallinity and percentage estimation. Carbohydr Polym 133:438–447

    Article  CAS  Google Scholar 

  • Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Editor-in-Chief Alfred French and the anonymous reviewers for their helpful comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Duchemin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duchemin, B. Size, shape, orientation and crystallinity of cellulose Iβ by X-ray powder diffraction using a free spreadsheet program. Cellulose 24, 2727–2741 (2017). https://doi.org/10.1007/s10570-017-1318-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1318-6

Keywords

Navigation