Skip to main content
Log in

Applying Direct Yellow 11 to a modified Simons’ staining assay

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

For quantification of overall fiber accessibility of lignocellulosic substrates, Direct Yellow 11 (C.I. 40000) is a suitable alternative to the discontinued Pylam Products’ dye Direct Orange 15 (C.I. 40002/40003). In this study we present a side-by-side comparison between the two azo-stilbene dyes. We characterize individual dye fractions and provide equations to determine individual concentrations. We present a modified Simons’ staining protocol incorporating the high molecular weight fraction of Direct Yellow 11. We perform tests on lignin, cellulosic, and lignocellulosic materials. In all tests, the two dyes perform similarly and satisfy many accessibility measurement criteria. We demonstrate that the adsorption of Direct Yellow 11 onto a substrate correlates with that substrate’s propensity for enzymatic hydrolysis. We confirm this correlation on a series of organic solvent pretreatments and on a series of lignocellulosic substrates. Finally, we outline the inherent limitations of performing adsorption experiments with Direct Yellow 11 and other high molecular weight dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abuja PM, Schmuck M, Pilz I, Tomme P, Claeyssens M, Esterbauer H (1988) Structural and functional domains of cellobiohydrolase I from Trichoderma reesei. Eur Biophys J 15(6):339–342

    Article  CAS  Google Scholar 

  • Chandra RP, Saddler JN (2012) Use of the Simons’ staining technique to assess cellulose accessibility in pretreated substrates. Ind Biotechnol 8(4):230–237

    Article  CAS  Google Scholar 

  • Chandra RP, Ewanick S, Hsieh C, Saddler JN (2008) The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, part 1: a modified Simons’ staining technique. Biotechnol Prog 24(5):1178–1185

    Article  CAS  Google Scholar 

  • Chandra RP, Arantes V, Saddler JN (2015) Steam pretreatment of agricultural residues facilitates hemicellulose recovery while enhancing enzyme accessibility to cellulose. Bioresour Technol 185:302–307

    Article  CAS  Google Scholar 

  • Chen Y, Wang Y, Wan J, Ma Y (2010) Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose 17(2):329–338

    Article  CAS  Google Scholar 

  • Gourlay K, Arantes V, Saddler JN (2012) Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Biotechnol Biofuels 5:51

    Article  CAS  Google Scholar 

  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity–a key predictor of the enzymatic hydrolysis rate. FEBS J 277(6):1571–1582

    Article  CAS  Google Scholar 

  • Inglesby MK, Zeronian SH (1996) The accessibility of cellulose as determined by dye adsorption. Cellulose 3(1):165–181

    Article  CAS  Google Scholar 

  • Luo Z, Zhu JY (2011) Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzyme Microb Technol 48(1):92–99

    Article  CAS  Google Scholar 

  • Meng X, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27:150–158

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  • Novozymes A/S (2010) Cellic® CTec2 and HTec2-enzymes for hydrolysis of lignocellulosic materials, Applications Report No. 2010-01668-01. Novozymes, Bagsvaerd

  • Shuai L, Luterbacher J (2016) Organic solvent effects in biomass conversion reactions. ChemSusChem 9(2):133–155

    Article  CAS  Google Scholar 

  • Simitzis J, Sfyrakis J, Faliagas A (1995) Characterization of pore structure by porosimetry and sorption on adsorbents produced from novolac-biomass. Mater Chem Phys 41(4):245–250

    Article  CAS  Google Scholar 

  • Simons FL (1950) A stain for use in the microscopy of beaten fibers. TAPPI 33(7):312–314

    CAS  Google Scholar 

  • Smith RE (2000) Stilbene dyes. Kirk-Othmer encyclopedia of chemical technology. Wiley, New York. doi:10.1002/0471238961.1920091219130920.a01

  • Stone JE, Scallian AM (1969) Digestibility as a simple function of a molecule of a similar size to a cellulase enzyme. Adv Chem Ser 95:219–224

    Article  CAS  Google Scholar 

  • TAPPI useful method UM256 (1981) Water retention value (WRV). TAPPI useful methods. TAPPI Press, Atlanta

    Google Scholar 

  • Wang QQ, He Z, Zhu Z, Zhang YH, Ni Y, Luo XL, Zhu JY (2012) Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol Bioeng 109(2):381–389

    Article  CAS  Google Scholar 

  • White AR, Brown RM (1981) Enzymatic hydrolysis of cellulose: visual characterization of the process. Proc Natl Acad Sci 78(2):1047–1051

    Article  CAS  Google Scholar 

  • Yu X, Minor JL, Atalla R (1995) Mechanism of action of Simons’ stain. Tappi J 78:175–180

    CAS  Google Scholar 

  • Zhang Z, Vancov T, Mackintosh S, Basu B, Lali A, Qian G, Hobson P, Doherty WO (2016) Assessing dilute acid pretreatment of different lignocellulosic biomasses for enhanced sugar production. Cellulose 23(6):3771–3783

    Article  CAS  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6(4):465–482

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a PSE Fellowship from the Renewable Bioproducts Institute (RBI) at the Georgia Institute of Technology. Special thanks to “The Lignin Group” at Georgia Tech. A Presidential Undergraduate Research Award from Georgia Tech to D.N.F. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas S. Bommarius.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (HTML 45 kb)

Supplementary material 2 (PDF 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwok, T.T., Fogg, D.N., Realff, M.J. et al. Applying Direct Yellow 11 to a modified Simons’ staining assay. Cellulose 24, 2367–2373 (2017). https://doi.org/10.1007/s10570-017-1269-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1269-y

Keywords

Navigation