Skip to main content
Log in

The nanocellulose biorefinery: woody versus herbaceous agricultural wastes for NCC production

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In the present work two agricultural residues (apple tree pruning and pea stalks) were studied as sources of nanocellulose. Different pretreatments that might be used in a biorefinery were applied to these lignocellulosic materials: autohydrolysis, organosolv (acetosolv) and alkaline pretreatments. After conventional bleaching, the resulting cellulosic fractions were submitted to a classical acid hydrolysis for nanocellulose crystal (NCC) production. The results showed that after applying different pretreatments, the resulting NCCs had different lengths (from 300 to 676 nm), surface charges (from 17 to 98 μmol acid groups/g NCC), purity (from 0.3 to 11.6% w/w of inorganics), crystallinity indexes and even allomorphism. These results highlighted the importance that cellulose source and particularly the applied pretreatments have on nanocrystal properties and suggest how biorefining pathways for lignocellulosic materials could customize such NCC features as surface reactivity or suitability for chemical modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr Polym 100:9–16

    Article  CAS  Google Scholar 

  • Alila S, Besbes I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259

    Article  CAS  Google Scholar 

  • Beck S, Bouchard J (2014) Auto-catalyzed acidic desulfation of cellulose nanocrystals. Nord Pulp Pap Res J 29:6–14

    Article  CAS  Google Scholar 

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983

    Article  CAS  Google Scholar 

  • Bettaieb F, Khiari R, Dufresne A, Mhenni MF, Belgacem MN (2015a) Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydr Polym 123:99–104

    Article  CAS  Google Scholar 

  • Bettaieb F, Khiari R, Hassan ML, Belgacem MN, Bras J, Dufresne A, Mhenni MF (2015b) Preparation and characterization of new cellulose nanocrystals from marine biomass Posidonia oceanica. Ind Crops Prod 72:175–182

    Article  CAS  Google Scholar 

  • Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crops Prod 32:627–633

    Article  CAS  Google Scholar 

  • Bras J, Viet D, Bruzzese C, Dufresne A (2011) Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydr Polym 84:211–215

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    Article  CAS  Google Scholar 

  • Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234

    Article  CAS  Google Scholar 

  • Chaker A, Alila S, Mutjé P, Vilar MR, Boufi S (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose 20:2863–2875

    Article  CAS  Google Scholar 

  • Cheng G, Varanasi P, Li C, Liu H, Melnichenko YB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12:933–941

    Article  CAS  Google Scholar 

  • Devi RR, Dhar P, Kalamdhad A, Katiyar V (2015) Fabrication of cellulose nanocrystals from agricultural compost. Compost Sci Util 23:104–116

    Article  CAS  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227

    Article  CAS  Google Scholar 

  • Espino E, Cakir M, Domenek S, Román-Gutiérrez AD, Belgacem N, Bras J (2014) Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Ind Crops Prod 62:552–559

    Article  CAS  Google Scholar 

  • FAOSTAT (2016) Food and agriculture organization of the United Nations. Statistics division. Online data collected from 2014 statistics in web http://faostat3.fao.org/browse/Q/*/E. Accessed 20 Aug 2016

  • Flauzino Neto WP, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—soy hulls. Ind Crops Prod 42:480–488

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78

    Article  CAS  Google Scholar 

  • García A, González Alriols M, Labidi J (2012) Evaluation of the effect of ultrasound on organosolv black liquor from olive tree pruning residues. Bioresour Technol 108:155–161

    Article  Google Scholar 

  • García A, González Alriols M, Labidi J (2014) Evaluation of different lignocellulosic raw materials as potential alternative feedstocks in biorefinery processes. Ind Crops Prod 53:102–110

    Article  Google Scholar 

  • Gaur R, Agrawal R, Kumar R, Ramu E, Bansal VR, Gupta RP, Kumar R, Tuli DK, Das B (2015) Evaluation of recalcitrant features impacting enzymatic saccharification of diverse agricultural residues treated by steam explosion and dilute acid. RSC Adv 5:60754–60762

    Article  CAS  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542

    Article  CAS  Google Scholar 

  • Haddadou I, Aliouche D, Brosse N, Amirou S (2015) Characterization of cellulose prepared from some Algerian lignocellulosic materials (zeen oak wood, Aleppo pine wood and date palm rachis). Eur J Wood Wood Prod 73:419–421

    Article  CAS  Google Scholar 

  • Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459

    Article  CAS  Google Scholar 

  • Jahan MS, Mun SP (2005) Effect of tree age on the cellulose structure of Nalita wood (Trema orientalis). Wood Sci Technol 39:367

    Article  CAS  Google Scholar 

  • Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969

    Article  CAS  Google Scholar 

  • Kallel F, Bettaieb F, Khiari R, García A, Bras J, Chaabouni SE (2016) Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind Crops Prod 87:287–296

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866

    Article  CAS  Google Scholar 

  • Kulshreshtha AK, Chudasama VP, Dweltz NE (1975) Analysis of cotton fiber maturity. I. X-ray study of phase transformation in various cottons. J Appl Polym Sci 19:115–123

    Article  CAS  Google Scholar 

  • Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393

    Article  CAS  Google Scholar 

  • Mathew AK, Parameshwaran B, Sukumaran RK, Pandey A (2016) An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production. Bioresour Technol 199:13–20

    Article  CAS  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550

    Article  CAS  Google Scholar 

  • Mondragon G, Fernandes S, Retegi A, Peña C, Algar I, Eceiza A, Arbelaiz A (2014) A common strategy to extracting cellulose nanoentities from different plants. Ind Crops Prod 55:140–148

    Article  CAS  Google Scholar 

  • Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324

    Article  CAS  Google Scholar 

  • O’Connor RT, DuPré EF, Mitcham D (1958) Applications of Infrared absorption spectroscopy to investigations of cotton and modified cottons part I: physical and crystalline modifications and oxidation. Text Res J 28:382–392

    Article  Google Scholar 

  • Romdhane A, Aurousseau M, Guillet A, Mauret E (2015) Effect of pH and ionic strength on the electrical charge and particle size distribution of starch nanocrystal suspensions. Starch Stärke 67:319–327

    Article  CAS  Google Scholar 

  • Rosli NA, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioResources 8:1893–1908

    Article  Google Scholar 

  • Rowell R (1983) The chemistry of solid wood. Based on a short course and symposium sponsored by the division of cellulose, paper and textile chemistry at the 185th spring meeting of the American Chemical Society, Seattle (70–72). 185th ACS National Meeting. Chemical & Engineering News Archive 61, pp 30–116

  • Ruel K, Nishiyama Y, Joseleau J-P (2012) Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Sci 193–194:48–61

    Article  Google Scholar 

  • Sèbe G, Ham-Pichavant F, Ibarboure E, Koffi ALC, Tingaut P (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13:570–578

    Article  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010a) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010b) Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose and cellulose nanocrystals. Bioresources 5(2):2010

    Google Scholar 

  • Urruzola I, Robles E, Serrano L, Labidi J (2014) Nanopaper from almond (Prunus dulcis) shell. Cellulose 21:1619–1629

    Article  CAS  Google Scholar 

  • Velásquez-Cock J, Castro C, Gañán P, Osorio M, Putaux J-L, Serpa A, Zuluaga R (2016) Influence of the maturation time on the physico-chemical properties of nanocellulose and associated constituents isolated from pseudostems of banana plant c.v. Valery. Ind Crops Prod 83:551–560

    Article  Google Scholar 

  • Wise LE, Murphy M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J 122:35

    CAS  Google Scholar 

  • Zhang J, Wang Y, Zhang L, Zhang R, Liu G, Cheng G (2014a) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol 151:402–405

    Article  CAS  Google Scholar 

  • Zhang PP, Tong DS, Lin CX, Yang HM, Zhong ZK, Yu WH, Wang H, Zhou CH (2014b) Effects of acid treatments on bamboo cellulose nanocrystals. Asia Pac J Chem Eng 9:686–695

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the Department of Education, Universities and Investigation of the Basque Government (Postdoctoral Development Program) for financially supporting this work. LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir—Grant Agreement No. ANR-11-LABX-0030) and of the Énergies du Futur and PolyNat Carnot Institutes (Investissements d’Avenir—Grant Agreements Nos. ANR-11-CARN-007-01 and ANR-11-CARN-030-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Araceli García or Julien Bras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, A., Labidi, J., Belgacem, M.N. et al. The nanocellulose biorefinery: woody versus herbaceous agricultural wastes for NCC production. Cellulose 24, 693–704 (2017). https://doi.org/10.1007/s10570-016-1144-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1144-2

Keywords

Navigation