Skip to main content
Log in

Characterization of endoglucanase rich Trichoderma reesei cellulase mixtures and their effect on alkaline solubility of dissolving pulp

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Dissolving grade pulps are used to manufacture regenerated cellulosic fibres. One promising process for the production of regenerated fibres utilises endoglucanse rich cellulases in the modification of dissolving pulp into alkaline soluble form. The aim of this paper was to characterise cellulases produced by Trichoderma reesei that are available in large quantities and study their effect on the dissolving grade softwood pulp, especially on its alkaline solubility. All the studied cellulases had endoglucanse activity and they decreased the intrinsic viscosity of the pulp. The degradation of cellulose into solubilised sugars increased with the cellulases containing also cellobiohydrolases. The monocomponent endoglucanases enhanced alkaline solubility of the pulp more than the multicomponent cellulases and produced alkaline solutions with higher fluidity. The studies showed that the type of the cellulases in the enzyme mixture has significant effect on the amount of solubilised sugars during the enzyme treatment and on the alkaline solubility of the pulp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4:3–18

    Article  CAS  Google Scholar 

  • Bailey MJ, Nevalainen KMH (1981) Induction, isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulose. Enzyme Microb Technol 3:153–157

    Article  CAS  Google Scholar 

  • Bailey MJ, Biley P, Poutanen K (1992) Interlaboratory testing methods for assay of xylanse activity. J Biotechnol 29:257–270

    Article  Google Scholar 

  • Bailey MJ, Siika-aho M, Valkeajärvi A, Penttilä ME (1993) Hydrolytic properties of two cellulases Trichoderma reesei expressed in yeast. Biotechnol Appl Biochem 17:65–76

    CAS  Google Scholar 

  • Bernfeld P (1955) Amylases, α and ß. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 1. Academic Press, New York, pp 149–158

    Google Scholar 

  • Cao Y, Tan H (2002a) Effects of cellulase on the modification of cellulose. Carbohydr Res 337:1291–1296

    Article  CAS  Google Scholar 

  • Cao Y, Tan H (2002b) The properties of enzyme-hydrolyzed cellulose in aqueous sodium hydroxide. Carbohydr Res 337:1453–1457

    Article  CAS  Google Scholar 

  • Cao Y, Tan H (2006) Improvement of alkali solubility of cellulose with enzymatic treatment. Appl Microbiol Biotechnol 70:176–182

    Article  CAS  Google Scholar 

  • Carillo F, Colom X, Sunõl JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:22229–22234

    Google Scholar 

  • Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose part II: free floating cotton and woof fibres in NaOH-water-additives systems. Mocromol Symp 244:19–30. doi:10.1002/masy.200651202

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P (2008) Swelling and dissolution of cellulose, part III: plant fibres in aqueous systems. Cellulose 15:67–74. doi:10.1007/s10570-007-9158-4

    Article  CAS  Google Scholar 

  • Engström AC, Ek M, Henriksson G (2006) Improved accessibility and reactivity of dissolving pulp for the viscose process: pretreatment with monocomponent endoglucanase. Biomacromolecules 7:2027–2031

    Article  Google Scholar 

  • Fock W (1959) A modified method for determining the reactivity of viscose-grade dissolving pulps. Papier (Bingen, Germany) 13:92–95

    CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    CAS  Google Scholar 

  • Grönqvist S, Hakala TK, Kamppuri T, Vehviläinen M, Hänninen T, Liitiä T, Maloney T, Suurnäkki A (2014) Fibre porosity development of dissolving pulp during mechanical and enzymatic processing. Cellulose 21:3667–3676. doi:10.1007/s10570-014-0352-x

    Article  Google Scholar 

  • Gwon JG, Lee SY, Doh GH, Kim JH (2010) Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J Appl Polym Sci 116:3212–3219

    CAS  Google Scholar 

  • Ibarra D, Köpcke V, Ek M (2010) Behavior of different monocomponent endoglucanases on the accessibility and reactivity of dissolving-grade pulps for viscose process. Enzyme Microb Technol 47:355–362

    Article  CAS  Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  • Kamide K, Okajima K, Matsui T, Kowsaka K (1984) Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C NMR. Polym J 16:857–866

    Article  CAS  Google Scholar 

  • Karlsson J, Medve J, Tjerneld F (1999) Hydrolysis of steam-pretreated lignocellulose. Appl Biochem Biotechnol 82:243–258

    Article  CAS  Google Scholar 

  • Karlsson J, Momcilovic D, Wittgren B, Schülein M, Tjerneld F, Brinkmalm G (2002) Enzymatic degradation of carboxymethyl celulose hydrolyzed by the endoglucanase Cel5A, Cel7B, and Cel 45A from Humicola Insolens and Cel7B, Cel12A and Cel45A core from Thrichoderma Reesei. Biopolymers 63:32–40

    Article  CAS  Google Scholar 

  • Kleman-Leyer KM, Siika-aho M, Teeri TT, Kirk TK (1996) The cellulases Endoglucanase I and cellobiohydrolase II of Thrichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size. Appl Environ Microbiol 62:2883–2887

    CAS  Google Scholar 

  • Köpcke V, Ibarra D, Ek M (2008) Increasing accessibility and reactivity of paper grade pulp by enzymatic treatment for use as dissolving pulp. Nord Pulp Pap Res J 23:363–368

    Article  Google Scholar 

  • Kotiranta P, Karlsson J, Siika-aho M, Medve J, Viikari L, Tjerneld F, Tenkanen M (1999) Adsorption and activity of Trichoderma reesei cellobiohydrolase I, endoglucanase II and the corresponding core proteins on steam pretreated willow. Appl Biochem Biotechnol 81:81–90

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Le Moigne N, Navard P (2010) Dissolution mechanisms of wood cellulose fibres in NaOH-water. Cellulose 17:31–45. doi:10.1007/s10570-009-9370-5

    Article  Google Scholar 

  • Le Moigne N, Jardeby K, Navard P (2010) Structural changes and alkaline solubility of wood cellulose fibers after enzymatic peeling treatment. Carbohydr Polym 79:325–332

    Article  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 23:265–275

    Google Scholar 

  • Medve J, Karlsson J, Lee D, Tjerneld F (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglunace II from Trichoderma reesei: adsorption, sugar production pattern and synergism of the enzymes. Biotechnol Bioeng 59:621–634

    Article  CAS  Google Scholar 

  • Miao Q, Chen L, Huang L, Tian C, Zheng L, Ni Y (2014) A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment. Bioresour Technol 154:109–113

    Article  CAS  Google Scholar 

  • Nakazawa H, Okada K, Kobayashi R, Kubota T, Onodera T, Ochiai N, Omata N, Ogasawara W, Okada H, Morikawa Y (2008) Characterization of the catalytic domains of Trichoderma reesei endoglucanases I, II, and III, expressed in Escherichia coli. Appl Microbiol Biotechnol 81:681–689

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in cellulose I and II. J Appl Polym Sci 8:1325–1341

    Article  CAS  Google Scholar 

  • Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Thrichoderma reesei: a new model for synergistic interaction. Biochem J 298:705–710

    Article  CAS  Google Scholar 

  • Orlowski A, Rog T, Paavilainen S, Manna M, Heiskanen I, Backfolk K, Timonen J, Vattulainen I (2015) How endoglucanase enzymes act on cellulose nanofibrils: role of amorphous regions revealed by atomistic simulations. Cellulose 22:2911–2925

    Article  CAS  Google Scholar 

  • Pu Y, Ziemer C, Ragauskas AJ (2006) CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohydr Res 341:591–597

    Article  CAS  Google Scholar 

  • Rahkamo L, Siika-aho M, Vehviläinen M, Dolk M, Viikari L, Nousiainen P, Buchert J (1996) Modification of hardwood dissolving grade pulp with purified Trchoderma reesei cellulases. Cellulose 3:153–163

    Article  CAS  Google Scholar 

  • Sandgren M, Shaw A, Ropp TH, Wu S, Bott R, Cameron AD, Ståhlberg J, Mitchinson C, Jones TA (2001) The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel12A, at 1.9 Å resolution. J Mol Biol 308:295–310

    Article  CAS  Google Scholar 

  • Suurnäkki A, Tenkanen M, Siika-aho M, Niku-Paavola ML, Viikari L, Buchert J (2000) Trichoderma reesei cellulases and their core domains in the hydrolysis and modification of chemical pulp. Cellulose 7:189–209

    Article  Google Scholar 

  • Tolan JS (2002) Iogen’s process for producing ethanol from cellulosic biomass. Clean Technol Environ Policy 3:339–345

    Article  Google Scholar 

  • Vehviläinen M, Kamppuri T, Rom M, Janicki J, Ciechanska D, Grönqvist S, Siika-aho M, Elg Christoffersson K, Nousiainen P (2008) Effect of wet spinning parameters on the properties of novel cellulosic fibres. Cellulose 15:671–680

    Article  Google Scholar 

  • Vehviläinen M, Kamppuri T, Grönqvist S, Rissanen M, Maloney T, Honkanen M, Nousiainen P (2015a) Dissolution of enzyme-treated cellulose using freezing-thawing method and the properties of fibres regenerated from the solution. Cellulose 22:1653–1674

    Article  Google Scholar 

  • Vehviläinen M, Kamppuri T, Setälä H, Grönqvist S, Rissanen M, Honkanen M, Nousiainen P (2015b) Regeneration of fibres from alkaline solution containing enzyme-treated 3-allyloxy-2-hydroxypropyl substituted cellulose. Cellulose 22:2271–2281

    Article  Google Scholar 

  • Virtanen T, Penttilä PA, Maloney TC, Grönqvist S, Kamppuri T, Vehviläinen M, Serimaa R, Maunu SL (2015) Impact of mechanical and enzymatic pretreatments on softwood pulp fibre wall structure studied with NMR spectroscopy and X-ray scattering. Cellulose 22:1565–1576. doi:10.1007/s10570-015-0619-x

    Article  CAS  Google Scholar 

  • Wang Y, Zhao Y, Deng Y (2008) Effect of enzymatic treatment on cotton fiber dissolution in NaOH/urea solution at cold temperature. Carbohydr Polym 72:178–184

    Article  CAS  Google Scholar 

  • Wang H, Pang B, Wu K, Kong F, Li B, Mu X (2014) Two stages of treatments for upgrading bleached softwood paper grade pulp to dissolving pulp for viscose production. Biochem Eng J 82:183–187

    Article  Google Scholar 

Download references

Acknowledgments

Funding from the Finnish Funding Agency for Technology and Innovation (TEKES) and Stora Enso Oyj are greatly acknowledged. The technical assistance of Maija Järventausta is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taina Kamppuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamppuri, T., Vehviläinen, M., Backfolk, K. et al. Characterization of endoglucanase rich Trichoderma reesei cellulase mixtures and their effect on alkaline solubility of dissolving pulp. Cellulose 23, 3901–3911 (2016). https://doi.org/10.1007/s10570-016-1055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1055-2

Keywords

Navigation