Skip to main content
Log in

Enhancing the inter-fiber bonding properties of cellulosic fibers by increasing different fiber charges

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulosic fiber has been increasingly used in many fields. The fiber charge, including the surface charge and inner charge, affects the properties of cellulosic fiber and fiber-based materials significantly. In this study, the cellulosic fiber was subjected to different treatments, including 2,2,6,6-tetramethyl-piperidine-1-oxyl radical-mediated oxidation, carboxymethyl cellulose attachment and mechanical refining, to alter the fiber charge selectively. The effects of the fiber surface charge and inner charge on fiber performances and inter-fiber bonding strength for improving the high-value application of cellulosic fibers, respectively, were discussed. The results showed that the performances of cellulosic fiber can be improved with the increase of either surface or inner fiber charges, including the increased water retention value, flexibility and inter-fiber bonding strength, but with slightly decreased drainability. An increasing bulk fiber charge showed more significant enhancement of the inter-fiber bonding strength than only an increase of the fiber surface charge on cellulosic fiber. This was because the fiber inner charge contributed to the increase of fiber flexibility and deformability, which could benefit the inter-fiber bonding indirectly. As a consequence, the bulk fiber charge enhancement was better for tensile strength improvement of handsheets (fiber-based material) than only fiber surface charge enhancement. Increasing both the surface charge and inner charge improved the tensile strength effectively with less change of the bulky fiber network than the refining treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aracri E, Valls C, Vidal T (2012) Paper strength improvement by oxidative modification of sisal cellulose fibers with laccase-TEMPO system: influence of the process variables. Carbohydr Polym 88(3):830–837

    Article  CAS  Google Scholar 

  • Banavath HN, Bhardwaj NK, Ray AK (2011) A comparative study of the effect of refining on charge of various pulps. Bioresour Technol 102(6):4544–4551

    Article  CAS  Google Scholar 

  • Barzyk D, Page DH, Ragauskas A (1997) Acidic group topochemistry and fibre-to-fibre specific bond strength. J Pulp Pap Sci 23(2):J59–J61

    CAS  Google Scholar 

  • Bhardwaj NK, Hoang V, Nguyen KL (2007) A comparative study of the effect of refining on physical and electrokinetic properties of various cellulosic fibres. Bioresour Technol 98(8):1647–1654

    Article  CAS  Google Scholar 

  • Dang Z, Zhang J, Ragauskas AJ (2007) Characterizing TEMPO-mediated oxidation of ECF bleached softwood kraft pulps. Carbohydr Polym 70(3):310–317

    Article  CAS  Google Scholar 

  • Duker E, Lindström T (2008) On the mechanisms behind the ability of CMC to enhance paper strength. Nord Pulp Pap Res J 23(1):57–64

    Article  CAS  Google Scholar 

  • Etter MC (1990) Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 23(4):120–126

    Article  CAS  Google Scholar 

  • Fardim P, Durán N (2003) Modification of fibre surfaces during pulping and refining as analysed by SEM, XPS and ToF-SIMS. Colloids Surf A: Physicochem Eng Asp 223(1):263–276

    Article  CAS  Google Scholar 

  • Fatehi P, Tutus A, Xiao H (2009) Cationic-modified PVA as a dry strength additive for rice straw fibers. Bioresour Technol 100(2):749–755

    Article  CAS  Google Scholar 

  • Fatehi P, Kititerakun R, Ni Y, Xiao H (2010a) Synergy of CMC and modified chitosan on strength properties of cellulosic fiber network. Carbohydr Polym 80(1):208–214

    Article  CAS  Google Scholar 

  • Fatehi P, Liu X, Ni Y, Xiao H (2010b) Interaction of cationic modified poly vinyl alcohol with high yield pulp. Cellulose 17(5):1021–1031

    Article  CAS  Google Scholar 

  • Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84(1):579–583

    Article  CAS  Google Scholar 

  • Gharehkhani S, Sadeghinezhad E, Kazi SN, Yarmand H, Badarudin A, Safaei MR, Zubir MNM (2015) Basic effects of pulp refining on fiber properties—a review. Carbohydr Polym 115:785–803

    Article  CAS  Google Scholar 

  • González I, Alcalà M, Chinga-Carrasco G, Vilaseca F, Boufi S, Mutjé P (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21(4):2599–2609

    Article  Google Scholar 

  • Horvath AE, Lindström T, Laine J (2006) On the indirect polyelectrolyte titration of cellulosic fibers. Conditions for charge stoichiometry and comparison with ESCA. Langmuir 22(2):824–830

    Article  CAS  Google Scholar 

  • Hubbe MA (2006) Bonding between cellulosic fibers in the absence and presence of dry-strength agents—a review. Bioresources 1(2):281–318

    Google Scholar 

  • Hubbe MA, Venditti RA, Rojas OJ (2007) What happens to cellulosic fibers during papermaking and recycling? A review. Bioresources 2(4):739–788

    CAS  Google Scholar 

  • John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364

    Article  CAS  Google Scholar 

  • Kargl R, Mohan T, Bračič M, Kulterer M, Doliška A, Stana-Kleinschek K, Ribitsch V (2012) Adsorption of carboxymethyl cellulose on polymer surfaces: evidence of a specific interaction with cellulose. Langmuir 28(31):11440–11447

    Article  CAS  Google Scholar 

  • Kato KL, Cameron RE (1999) A review of the relationship between thermally-accelerated ageing of paper and hornification. Cellulose 6(1):23–40

    Article  CAS  Google Scholar 

  • Katz S, Beatson RP, Scallan AM (1984) The determination of strong and weak acidic groups in sulfite pulps. Sven Papperstidn 87:R48–R53

    CAS  Google Scholar 

  • Kongdee A, Bechtold T, Burtscher E, Scheinecker M (2004) The influence of wet/dry treatment on pore structure-the correlation of pore parameters, water retention and moisture regain values. Carbohydr Polym 57(1):39–44

    Article  CAS  Google Scholar 

  • Laine J, Lindstrom T, Nordmark GG, Risinger G (2000) Studies on topochemical modification of cellulosic fibres Part 1. Chemical conditions for the attachment of carboxymethyl cellulose onto fibres. Nord Pulp Pap Res J 15(5):520–526

    Article  CAS  Google Scholar 

  • Lei M, Zhang H, Li J, Duan J (2013) Characteristics of poplar preconditioning followed by refining chemical treatment alkaline peroxide mechanical pulp fiber fractions and their effects on formation and properties of high-yield pulp containing paper. Ind Eng Chem Res 52(11):4083–4088

    Article  CAS  Google Scholar 

  • Li H, Zhang H, Li J, Du F (2014) Comparison of interfiber bonding ability of different poplar P-RC alkaline peroxide mechanical pulp (APMP) fiber fractions. BioResources 9(4):6019–6027

    Google Scholar 

  • Li J, Liu Y, Duan C, Zhang H, Ni Y (2015) Mechanical pretreatment improving hemicelluloses removal from cellulosic fibers during cold caustic extraction. Bioresour Technol 192:501–506

    Article  CAS  Google Scholar 

  • Lowe RM, Page DH, Waterhouse JF, Hsieh J, Cheluka N, Ragauskas AJ (2007) Deformation behavior of wet lignocellulosic fibers. Holzforschung 61(3):261–266

    Article  CAS  Google Scholar 

  • Ma P, Fu S, Zhai H, Law K, Daneault C (2012) Influence of TEMPO-mediated oxidation on the lignin of thermomechanical pulp. Bioresour Technol 118:607–610

    Article  CAS  Google Scholar 

  • Malti A, Edberg J, Granberg H et al (2016) Conducting polymers: an organic mixed ion-electron conductor for power electronics. Adv Sci. doi:10.1002/advs.201670006

    Google Scholar 

  • Mao L, Law K, Claude D, Francois B (2008) Effects of carboxyl content on the characteristics of TMP long fibers. Ind Eng Chem Res 47(11):3809–3812

    Article  CAS  Google Scholar 

  • Miao Q, Chen L, Huang L, Tian C, Zheng L, Ni Y (2014a) A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment. Bioresour Technol 154:109–113

    Article  CAS  Google Scholar 

  • Miao Q, Zhong G, Qin M, Chen L, Huang L (2014b) Influence of alkaline treatment and alkaline peroxide bleaching of aspen chemithermomechanical pulp on dissolved and colloidal substances. Ind Eng Chem Res 53(6):2544–2548

    Article  CAS  Google Scholar 

  • Miao Q, Tian C, Chen L, Huang L, Zheng L, Ni Y (2015) Combined mechanical and enzymatic treatments for improving the Fock reactivity of hardwood kraft-based dissolving pulp. Cellulose 22(1):803–809

    Article  CAS  Google Scholar 

  • Ni Y, He Z, Zhang H, Zhou Y (2011) Characteristics of high yield pulp and its effect on some typical wet-end issues. J Biobased Mater Biol 5(2):181–186

    Article  CAS  Google Scholar 

  • Nooy AEJ, Besemer AC, Bekkum H (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups inwater-soluble glucans. Carbohydr Res 269(1):89–98

    Article  Google Scholar 

  • Öhman LO, Wågberg L, Malmgren K, Tjernström A (1997) Adsorption of aluminum (III) on cellulosic fibres in neutral to alkaline solutions: influence of charge and size of the particles formed. J Pulp Pap Sci 23(10):J467–J474

    Google Scholar 

  • Page DH (1969) A theory for tensile strength of paper. Tappi J 52(4):674

    CAS  Google Scholar 

  • Petit-Conil M, Cochaux A, De Choudens C (1994) Mechanical pulp characterization: a new and rapid method to evaluate fibre flexibility. Pap Puu 76(10):657–662

    CAS  Google Scholar 

  • Rakkolainen M, Kontturi E, Isogai A, Enomae T, Blomstedt M, Vuorinen T (2009) Carboxymethyl cellulose treatment as a method to inhibit vessel picking tendency in printing of eucalyptus pulp sheets. Ind Eng Chem Res 48(4):1887–1892

    Article  CAS  Google Scholar 

  • Scallan AM (1983) The effect of acidic groups on the swelling of pulps: a review. Tappi J 66(11):73–75

    CAS  Google Scholar 

  • Sezaki T, Hubbe MA, Heitmann JA, Argyropoulos DS (2006) Colloidal effects of acrylamide polyampholytes: part 2: adsorption onto cellulosic fibers. Colloids Surf A: Physicochem Eng Asp 289(1):89–95

    Article  CAS  Google Scholar 

  • Shen J, Song Z, Qian X, Ni Y (2011) A review on use of fillers in cellulosic paper for functional applications. Ind Eng Chem Res 50(2):661–666

    Article  CAS  Google Scholar 

  • Sim G, Alam MN, Godbout L, van de Ven T (2014) Structure of swollen carboxylated cellulose fibers. Cellulose 21(6):4595–4606

    Article  CAS  Google Scholar 

  • Sjöström E (1989) The origin of charge on cellulosic fibres. Nord Pulp Pap Res J 4(2):90–93

    Article  Google Scholar 

  • Wågberg L, Odberg L, Glad-Nordmark G (1989) Charge determination of porous substrates by polyelectrolyte adsorption. Part 1. Carboxymethylated, bleached cellulosic fibers. Nord Pulp Pap Res J 2:71–76

    Article  Google Scholar 

  • Wang B, Li R, He B, Li J (2011) The impacts of lignin coverage, relative bonded area, and fiber properties on sheet strength. Bioresources 6(4):4356–4369

    CAS  Google Scholar 

  • Zaman M, Liu H, Xiao H, Chibante F, Ni Y (2013) Hydrophilic modification of polyester fabric by applying nanocrystalline cellulose containing surface finish. Carbohydr Polym 91(2):560–567

    Article  CAS  Google Scholar 

  • Zemljič LF, Stenius P, Laine J, Stana-Kleinschek K (2008) Topochemical modification of cotton fibres with carboxymethyl cellulose. Cellulose 15(2):315–321

    Article  Google Scholar 

  • Zhang H, He Z, Ni Y (2011) Improvement of high-yield pulp properties by using a small amount of bleached wheat straw pulp. Bioresour Technol 102(3):2829–2833

    Article  CAS  Google Scholar 

  • Zhang H, Zhao C, Li Z, Li J (2016a) The fiber charge measurement depending on the poly-DADMAC accessibility to cellulose fibers. Cellulose 23(1):163–173

    Article  CAS  Google Scholar 

  • Zhang H, Zeng X, Xie J, Li Z, Li H (2016b) Study on the sorption process of triclosan on cationic microfibrillated cellulose and its antibacterial activity. Carbohydr Polym 136:493–498

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (grant no. 31370577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Zhang, H., Zeng, X. et al. Enhancing the inter-fiber bonding properties of cellulosic fibers by increasing different fiber charges. Cellulose 23, 1617–1628 (2016). https://doi.org/10.1007/s10570-016-0941-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0941-y

Keywords

Navigation