Skip to main content
Log in

Behavior of polylactide/microcrystalline cellulose biocomposites: effects of filler content and interfacial compatibilization

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the effects of microcrystalline cellulose (MCC) content on the properties of polylactide (PLA) biocomposites; including the influences of maleic anhydride (MA) grafted PLA copolymer compatibilization. PLA/MCC biocomposites were produced by industrially compatible production techniques, i.e. twin-screw extrusion melt-mixing for compounding and injection molding for shaping of bulk specimens. SEM analysis and mechanical tests indicated that use of 3 wt% MCC resulted in very uniform distribution and consequently improved properties especially in terms of ductility and toughness. For instance, compared to neat PLA, the increases in the values of % strain at break and fracture toughness were 78 and 31 %, respectively. After MA compatibilization, these increases became as much as 82 and 55 %, respectively. Moreover, DSC and TGA indicated that use of MCC resulted in no significant changes in the transition temperatures and thermal degradation temperatures of PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ben G, Kihara Y, Nakamori K, Aoki Y (2007) Examination of heat resistant tensile properties and molding conditions of green composites composed of kenaf fibers and PLA resin. Adv Compos Mater 16(4):361–376

    Article  CAS  Google Scholar 

  • Bitinis N, Verdejo R, Cassagnau P, Lopez-Manchado MA (2011) Structure and properties of polylactide/natural rubber blends. Mater Chem Phy 129:823–831

    Article  CAS  Google Scholar 

  • Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 67:462–470

    Article  CAS  Google Scholar 

  • Cho D, Seo JM, Lee HS, Cho CW, Han SO, Park WH (2007) Property improvement of natural fiber-reinforced green composites by water treatment. Adv Compos Mat 16(4):299–314

    Article  CAS  Google Scholar 

  • Dai X, Xiong Z, Na H, Zhu J (2014) How does epoxidized soybean oil improve the toughness of microcrystalline cellulose filled polylactide acid composites? Compo Sci Tech 90:9–15

    Article  CAS  Google Scholar 

  • Feng F, Ye L (2011) Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci 119:2778–2783

    Article  CAS  Google Scholar 

  • Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of structure of solution grown crystals of lactide copolymers by means of chemical reactions. Coll Polym Sci 251:980–990

    CAS  Google Scholar 

  • Frone AN, Berlioz S, Chailan JF, Panaitescu DM, Donescu D (2011) Cellulose fiber-reinforced polylactic acid. Polym Compo 32:976–985

    Article  CAS  Google Scholar 

  • Han JJ, Huang HX (2011) Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci 120:3217–3223

    Article  CAS  Google Scholar 

  • Hong H, Wei J, Yuan Y, Chen FP, Wang J, Qu X, Liu CH (2011) A novel composite coupled hardness with flexibleness-polylactic acid toughen with thermoplastic polyurethane. J Appl Polym Sci 121:855–861

    Article  CAS  Google Scholar 

  • Hu R, Lim JK (2007) Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J Compos Mater 41(13):1655–1669

    Article  CAS  Google Scholar 

  • Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly (lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68:424–432

    Article  CAS  Google Scholar 

  • Hwang SW, Lee SB, Lee CK, Lee JY, Shim JK, Selke SEM, Soto-Valdez H, Matuana L, Rubino M, Auras R (2012) Grafting of maleic anhydride on poly(l-lactic acid). Effects of physical and mechanical properties. Polym Test 31:333–344

    Article  CAS  Google Scholar 

  • Jaratrotkamjorn R, Khaokong C, Tanrattanakul V (2012) Toughness enhancement of poly (lactic acid) by melt blending with natural rubber. J Appl Polym Sci 124:5027–5036

    CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    Article  CAS  Google Scholar 

  • Kaynak C, Meyva Y (2014) Use of maleic anhydride compatibilization to improve toughness and other properties of polylactide blended with thermoplastic elastomers. Polym Adv Technol 25:1622–1632

    Article  CAS  Google Scholar 

  • Khondker OA, Ishiaku US, Nakai A, Hamada H (2006) A novel processing technique for thermoplastic manufacturing of unidirectional composites reinforced with jute yarns. Compos A 37:2274–2284

    Article  CAS  Google Scholar 

  • Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos A 37:80–91

    Article  CAS  Google Scholar 

  • Li HF, Li H, Zhong X, Li X, Gibril ME, Zhang Y, Han K, Yu M (2012) Study on the chemical modification of cellulose in ionic liquid with maleic anhydride. Adv Mater Res 581–582:287–291

    Google Scholar 

  • Masirek R, Kulinski Z, Chionna D, Piorkowska E, Pracella M (2007) Composites of poly(L-lactide) with hemp fibers: morphology and thermal and mechanical properties. J Appl Polym Sci 105:255–268

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025

    Article  CAS  Google Scholar 

  • Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262

    Article  CAS  Google Scholar 

  • Mohamad Haafiz MK, Hassan A, Zakaria Z, Inuwa IM, Islam MS, Jawaid M (2013) Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydrate Polym 98:139–145

    Article  CAS  Google Scholar 

  • Mukherjee T, Sani M, Kao N, Gupta RK, Quazi N, Bhattacharya S (2013) Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation. Chem Eng Sci 101:655–662

    Article  CAS  Google Scholar 

  • Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech Mater 40:446–452

    Article  Google Scholar 

  • Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324

    Article  CAS  Google Scholar 

  • Okubo K, Fujii T, Yamashaita N (2005) Improvement of interfacial adhesion in bamboo polymer composite enhanced with micro-fibrillated cellulose. Jpn Soc Mech Eng Inter J 48(4):199–204

    Google Scholar 

  • Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos A 40:469–475

    Article  CAS  Google Scholar 

  • Osman H, Ismail H, Mustapha M (2010) Effects of maleic anhydride polypropylene on tensile, water absorption, and morphological properties of recycled newspaper filled polypropylene/natural rubber composites. J Compos Mater 44:1477–1491

    Article  CAS  Google Scholar 

  • Pandey JK, Nakagaito AN, Takagi H (2013) Fabrication and applications of cellulose nanaoparticle-based polymer composites. Polym Eng Sci 53(1):1–8

    Article  CAS  Google Scholar 

  • Qu P, Gao Y, Wu GF, Zhang LP (2010) Nanocomposites of poly(lactic acid) reinforced with cellulose nanofibrils. Bioresources 5(3):1811–1823

    CAS  Google Scholar 

  • Shanks RA, Hodzic A, Ridderhof D (2006) Composites of poly(lactic acid) with flax fibers modified by interstitial polymerization. J Appl Polym Sci 101:3620–3629

    Article  CAS  Google Scholar 

  • Tokoro R, Vu DM, Okubo K, Tanaka T, Fuji T, Fujiura T (2008) How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci 43:775–787

    Article  CAS  Google Scholar 

  • Wong S, Shanks RA, Hodzic A (2004) Mechanical behaviour and fracture toughness of poly (L-lactic acid)–natural fiber composites modified with hyperbranched polymers. Macromol Mater Eng 289:447–456

    Article  CAS  Google Scholar 

  • Xiao L, Mai Y, He F, Yu L, Zhang L, Tang H, Yang G (2012) Bio-based green composites with high performance from poly(lactic acid) and surface-modified microcrystalline cellulose. J Mater Chem 22:15732–15739

    Article  CAS  Google Scholar 

  • Yew GH, Mohd Yusof AM, Mohd Ishak ZA, Ishiaku US (2005) Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites. Polym Degr Stabil 90:488–500

    Article  CAS  Google Scholar 

  • Yıldız S, Karaagaç B, Ozkoc G (2014) Toughening of poly(lactic acid) with silicone rubber. Polym Eng Sci 54(9):2029–2036

    Article  CAS  Google Scholar 

  • Zhang C, Wang W, Huang Y, Pan Y, Jiang L, Dan Y, Luo Y, Peng Z (2013) Thermal, mechanical and rheological properties of polylactide toughened by epoxidized natural rubber. Mater Des 45:198–205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge financial support from METU Scientific Research Fund grant for the Project BAP-03-08-2015-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cevdet Kaynak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogu, B., Kaynak, C. Behavior of polylactide/microcrystalline cellulose biocomposites: effects of filler content and interfacial compatibilization. Cellulose 23, 611–622 (2016). https://doi.org/10.1007/s10570-015-0839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0839-0

Keywords

Navigation