Skip to main content

Advertisement

Log in

Effect of alkali on konjac glucomannan film and its application on wound healing

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

A Correction to this article was published on 24 September 2018

Abstract

Konjac glucomannan (KGM) is widely used in the food industry because of its biocompatibility, nontoxicity, and favorable film-forming ability. However, KGM has been seldom applied to biomaterials for tissue regeneration. In this paper, we investigate the effects of Ca(OH)2 on KGM film and evaluate its potency as a wound dressing. We successfully prepared Ca(OH)2-treated KGM film. High Ca(OH)2 concentrations created rough film surfaces. These rough surfaces resulted from the deposition of nanosized or microsized CaCO3(s). Compared with commercially available 3M hydrocolloid dressings, dressings with KGM exhibited a more favorable degree of swelling and water vapor transmission rate. The film with a Ca(OH)2/KGM weight ratio of 2.5 % exhibited the optimal tensile strength and elongation. The results of an in vitro MTT [3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide] cell viability assay revealed the favorable biocompatibility of KGM films with L929 cells. For antibacterial evaluation, tetracycline-loaded KGM film exhibited strong inhibitory effects against Staphylococcus aureus with a 2.5-cm inhibition zone. In vivo animal studies have indicated that KGM films effectively promote the contractility of wounds, especially at the early healing stage. Histological examinations have also demonstrated that using KGM films to treat wounds enables considerably advanced granulation tissue and epithelial coverage to develop by the 7th and 14th days of treatment. In summary, Ca(OH)2-treated KGM film could be considered as a promising, novel, biocompatible wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26(32):6335–6342. doi:10.1016/j.biomaterials.2005.04.012

    Article  CAS  Google Scholar 

  • Benbow M (2010) Managing wound pain: is there an ‘ideal dressing’? Br J Nurs 19(20):1273–1274

    Article  Google Scholar 

  • Brandi C, Grimaldi L, Nisi G, Brafa A, Campa A, Calabro M, Campana M, D’Aniello C (2010) The role of carbon dioxide therapy in the treatment of chronic wounds. In Vivo 24(2):223–226

    CAS  Google Scholar 

  • Cheng LH, Karim AA, Norziah MH, Seow CC (2002) Modification of the microstructural and physical properties of konjac glucomannan-based films by alkali and sodium carboxymethylcellulose. Food Res Int 35(9):829–836

    Article  CAS  Google Scholar 

  • Coskun G, Karaca E, Ozyurtlu M, Ozbek S, Yermezler A, Cavusoglu I (2014) Histological evaluation of wound healing performance of electrospun poly(vinyl alcohol)/sodium alginate as wound dressing in vivo. Biomed Mater Eng 24(2):1527–1536. doi:10.3233/BME-130956

    CAS  Google Scholar 

  • Dressler DP, Barbee WK, Sprenger R (1980) The effect of Hydron burn wound dressing on burned rat and rabbit ear wound healing. J Trauma 20(12):1024–1028

    Article  CAS  Google Scholar 

  • Fan L, Cheng C, Qiao Y, Li F, Li W, Wu H, Ren B (2013) GNPs-CS/KGM as hemostatic first aid wound dressing with antibiotic effect: in vitro and in vivo study. PLoS One 8(7):e66890. doi:10.1371/journal.pone.0066890

    Article  CAS  Google Scholar 

  • Gethin G (2004) Is there enough clinical evidence to use honey to manage wounds? J Wound Care 13(7):275–278

    Article  CAS  Google Scholar 

  • Gethin GT, Cowman S, Conroy RM (2008) The impact of Manuka honey dressings on the surface pH of chronic wounds. Int Wound J 5(2):185–194. doi:10.1111/j.1742-481X.2007.00424.x

    Article  Google Scholar 

  • Greener B, Hughes AA, Bannister NP, Douglass J (2005) Proteases and pH in chronic wounds. J Wound Care 14(2):59–61

    Article  CAS  Google Scholar 

  • Harkins AL, Duri S, Kloth LC, Tran CD (2014) Chitosan–cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility. J Biomed Mater Res B Appl Biomater. doi:10.1002/jbm.b.33103

  • Herranz B, Tovar CA, Solo-de-Zaldivar B, Borderias AJ (2013) Influence of alkali and temperature on glucomannan gels at high concentration. LWT Food Sci Technol 51:500–506

    Article  CAS  Google Scholar 

  • Huang L, Takahashi R, Kobayashi S, Kawase T, Nishinari K (2002) Gelation behavior of native and acetylated konjac glucomannan. Biomacromolecules 3(6):1296–1303

    Article  CAS  Google Scholar 

  • Huang YC, Hsu SH, Kuo WC, Chang-Chien CL, Cheng H, Huang YY (2011) Effects of laminin-coated carbon nanotube/chitosan fibers on guided neurite growth. J Biomed Mater Res A 99(1):86–93. doi:10.1002/jbm.a.33164

    Article  Google Scholar 

  • Jin W, Mei T, Wang Y, Xu W, Li J, Zhou B, Li B (2014) Synergistic degradation of konjac glucomannan by alkaline and thermal method. Carbohydr Polym 99:270–277. doi:10.1016/j.carbpol.2013.08.029

    Article  CAS  Google Scholar 

  • Kim HJ, Choi EY, Oh JS, Lee HC, Park SS, Cho CS (2000) Possibility of wound dressing using poly(l-leucine)/poly(ethylene glycol)/poly(l-leucine) triblock copolymer. Biomaterials 21(2):131–141. doi:10.1013/S0142-9612(99)00140-4

    Article  CAS  Google Scholar 

  • Kim IY, Yoo MK, Seo JH, Park SS, Na HS, Lee HC, Kim SK, Cho CS (2007) Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application. Int J Pharm 341(1–2):35–43. doi:10.1016/j.ijpharm.2007.03.042

    Article  CAS  Google Scholar 

  • Kitamoto N, Kato Y, Ohnaka T, Yokota M, Tanaka T, Tsuji K (2003) Bactericidal effects of konjac fluid on several food-poisoning bacteria. J Food Prot 66(10):1822–1831

    Google Scholar 

  • Leveen HH, Falk G, Borek B, Diaz C, Lynfield Y, Wynkoop BJ, Mabunda GA, Rubricius JL, Christoudias GC (1973) Chemical acidification of wounds. An adjuvant to healing and the unfavorable action of alkalinity and ammonia. Ann Surg 178(6):745–753

    Article  CAS  Google Scholar 

  • Li L, Ruan H, Ma LL, Wang W, Zhou P, He GQ (2009) Study on swelling model and thermodynamic structure of native konjac glucomannan. J Zhejiang Univ Sci B 10(4):273–279. doi:10.1631/jzus.B0820221

    Article  CAS  Google Scholar 

  • Li B, Li J, Xia J, Kennedy JF, Yie X, Liu TG (2011a) Effect of gamma irradiation on the condensed state structure and mechanical properties of konjac glucomannan/chitosan blend films. Carbohydr Polym 83(1):44–51. doi:10.1016/j.carbpol.2010.07.017

    Article  CAS  Google Scholar 

  • Li B, Xie BJ, Kennedy JF (2011b) Studies on the molecular chain morphology of konjac glucomannan. Carbohydr Polym 86(3):1421. doi:10.1016/j.carbpol.2011.04.036

    Article  CAS  Google Scholar 

  • Liakos I, Rizzello L, Scurr DJ, Pompa PP, Bayer IS, Athanassiou A (2014) All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int J Pharm 463(2):137–145. doi:10.1016/j.ijpharm.2013.10.046

    Article  CAS  Google Scholar 

  • Muthukumar T, Prabu P, Ghosh K, Sastry TP (2014) Fish scale collagen sponge incorporated with Macrotyloma uniflorum plant extract as a possible wound/burn dressing material. Colloids Surf B Biointerfaces 113:207–212. doi:10.1016/j.colsurfb.2013.09.019

    Article  CAS  Google Scholar 

  • Nie HR, Shen XX, Zhou ZH, Jiang QS, Chen YW, Xie A, Wang Y, Han CC (2011) Electrospinning and characterization of konjac glucomannan/chitosan nanofibrous scaffolds favoring the growth of bone mesenchymal stem cells. Carbohydr Polym 85(3):681–686. doi:10.1016/j.carbpol.2011.03.036

    Article  CAS  Google Scholar 

  • Niiyama H, Kuroyanagi Y (2014) Development of novel wound dressing composed of hyaluronic acid and collagen sponge containing epidermal growth factor and vitamin C derivative. J Artif Organs 17(1):81–87. doi:10.1007/s10047-013-0737-x

    Article  CAS  Google Scholar 

  • Nishinari K, Williams PA, Phillips GO (1992) Review of the physico-chemical characteristics and properties of konjac mannan. Food Hydrocoll 6:199–222

    Article  CAS  Google Scholar 

  • Pan Z, Meng J, Wang Y (2011) Effects of alkalis on deacetylation of konjac glucomannan in mechano-chemical treatment. Particuology 9:265–269

    Article  CAS  Google Scholar 

  • Percival SL, McCarty S, Hunt JA, Woods EJ (2014) The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen 22(2):174–186. doi:10.1111/wrr.12125

    Article  Google Scholar 

  • Piaggesi A, Baccetti F, Rizzo L, Romanelli M, Navalesi R, Benzi L (2001) Sodium carboxyl-methyl-cellulose dressings in the management of deep ulcerations of diabetic foot. Diabet Med 18(4):320–324

    Article  CAS  Google Scholar 

  • Qi J, Gao XX, Chen HH, Huang K, Liu SX, Zhao Y, Yang LM, Weng SF, Xu YZ, Xu DF, Wu JG (2008) Studies on coordination and hydrogen bond intermolecular interaction using 1D & 2D FTIR spectroscopy. Guang pu xue yu guang pu fen xi = Guang pu 28(3):538–542

    CAS  Google Scholar 

  • Selig HF, Lumenta DB, Giretzlehner M, Jeschke MG, Upton D, Kamolz LP (2012) The properties of an “ideal” burn wound dressing—what do we need in daily clinical practice? Results of a worldwide online survey among burn care specialists. Burns 38(7):960–966. doi:10.1016/j.burns.2012.04.007

    Article  Google Scholar 

  • Serizawa T, Tateishi T, Akashi M (2003) Cell-compatible properties of calcium carbonates and hydroxyapatite deposited on ultrathin poly(vinyl alcohol)-coated polyethylene films. J Biomater Sci Polym Ed 14(7):653–663

    Article  CAS  Google Scholar 

  • Shahbuddin M, MacNeil S, Rimmer S (2012) Synthesis and preparation of konjac glucomannan hydrogel for wound healing. J Tissue Eng Regen Med 6(Suppl. 1):1–429

    Google Scholar 

  • Shahbuddin M, Shahbuddin D, Bullock AJ, Ibrahim H, Rimmer S, MacNeil S (2013) High molecular weight plant heteropolysaccharides stimulate fibroblasts but inhibit keratinocytes. Carbohydr Res 375:90–99. doi:10.1016/j.carres.2013.04.006

    Article  CAS  Google Scholar 

  • Shahbuddin M, Bullock AJ, MacNeil S, Rimmer S (2014) Glucomannan-poly(N-vinyl pyrrolidinone) bicomponent hydrogels for wound healing. J Mater Chem B 2:727. doi:10.1039/c3tb21640c

    Article  CAS  Google Scholar 

  • Sirvio LM, Grussing DM (1989) The effect of gas permeability of film dressings on wound environment and healing. J Invest Dermatol 93(4):528–531

    Article  CAS  Google Scholar 

  • Suzuki Y, Tanihara M, Nishimura Y, Suzuki K, Kakimaru Y, Shimizu Y (1997) A novel wound dressing with an antibiotic delivery system stimulated by microbial infection. ASAIO J 43(5):M854–M857

    Article  CAS  Google Scholar 

  • Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS (2014) Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohydr Polym 102:884–892. doi:10.1016/j.carbpol.2013.10.070

    Article  CAS  Google Scholar 

  • Williams MA, Foster TJ, Martin DR, Norton IT, Yoshimura M, Nishinari K (2000) A molecular description of the gelation mechanism of konjac mannan. Biomacromolecules 1(3):440–450

    Article  CAS  Google Scholar 

  • Wilson IA, Henry M, Quill RD, Byrne PJ (1979) The pH of varicose ulcer surfaces and its relationship to healing. VASA 8(4):339–342

    CAS  Google Scholar 

  • Winter GD (1962) Formation of the scab and the rate of epithelialization of superficial wounds in the skin of the young domestic pig. Nature 193:293–294

    Article  CAS  Google Scholar 

  • Yang JM, Yang JH, Huang HT (2014) Chitosan/polyanion surface modification of styrene-butadiene-styrene block copolymer membrane for wound dressing. Mater Sci Eng C Mater Biol Appl 34:140–148. doi:10.1016/j.msec.2013.09.001

    Article  CAS  Google Scholar 

  • Yari A, Yeganeh H, Bakhshi H, Gharibi R (2013) Preparation and characterization of novel antibacterial castor oil-based polyurethane membranes for wound dressing application. J Biomed Mater Res A 102(1):84–96. doi:10.1002/jbm.a.34672

    Article  Google Scholar 

  • Ye X, Kennedy JF, Li B, Xie BJ (2006) Condensed state structure and biocompatibility of the konjac glucomannan/chitosan blend films. Carbohydr Polym 64:532–538

    Article  CAS  Google Scholar 

  • Young NM, Oomen RP (1992) Analysis of sequence variation among legume lectins. A ring of hypervariable residues forms the perimeter of the carbohydrate-binding site. J Mol Biol 228(3):924–934

    Article  CAS  Google Scholar 

  • Yu ZJ, Jiang YQ, Zou WW, Duan JJ, Xiong XP (2009) Preparation and characterization of cellulose and konjac glucomannan blend film from ionic liquid. J Polym Sci Polym Phys 47(17):1686–1694. doi:10.1002/Polb.21768

    Article  CAS  Google Scholar 

  • Zhang H, Gu CH, Wu H, Fan L, Li F, Yang F, Yang Q (2007) Immobilization of derivatized dextran nanoparticles on konjac glucomannan/chitosan film as a novel wound dressing. BioFactors 30(4):227–240

    Article  CAS  Google Scholar 

  • Zhang FY, Zhou YM, Sun YQ, Chen J, Ye XY, Huang JY (2010) Preparation and characterization of Chitosan/Konjac glucomannan/CdS nanocomposite film with low infrared emissivity. Mater Res Bull 45(7):859–862. doi:10.1016/j.materresbull.2010.02.019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of Taiwan for financially supporting this research under Contract No. NSC 102-2221-E-019-004. Wallace Academic Editing is appreciated for his editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Cheng Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YC., Yang, CY., Chu, HW. et al. Effect of alkali on konjac glucomannan film and its application on wound healing. Cellulose 22, 737–747 (2015). https://doi.org/10.1007/s10570-014-0512-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0512-z

Keywords

Navigation