Skip to main content

Advertisement

Log in

Development of Gelatin/Shekar tighal/Persian gum-based films reinforced with Anghozeh oil for potential wound dressing applications

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The development of appropriate wound dressings is a promising treatment for severe skin injuries. Herein, the gelatin (G) films containing Shekar tighal manna (St) as a pharmaceutical polysaccharide, Persian gum (Pg), and Essential Oil of Anghozeh (EOA) were fabricated for wound dressing application. The films were tested for mechanical properties, swelling behavior, FTIR, and XRD, and their morphology was characterized using SEM. In vitro studies were done to check blood compatibility and anti-inflammatory properties. The microbial barrier properties of composite films were also investigated. The G/St/Pg/EOA film exhibited a heterogeneous structure with more cavities containing oil droplets enclosed, while other films showed rough surfaces with fewer pores. The films showed a tensile strength of 2.33 ± 0.81 to 7.83 ± 0.76 MPa, and the G/St/Pg/EOA film had the highest elongation at break (34.48 ± 0.89). The gelatin films presented cytocompatibility (> 80%) and hemocompatibility with hemolysis lower than 2%. Also, enhanced anti-inflammatory activity was observed with St, Pg, and EOA incorporation (~ 88.4%). The G/St, G/St/Pg, and G/St/Pg/EOA films significantly inhibited the growth of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Also, the addition of St, Pg, and oil created a robust microbial barrier in these films. These impressive findings could potentially lead to the development of revolutionary treatments for bacterial infections and inflammatory conditions of wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Amaral HR, Wilson JA, Do Amaral RJ, Pasçu I, De Oliveira FC, Kearney CJ, Freitas JC, Heise A (2021) Synthesis of bilayer films from regenerated cellulose nanofibers and poly (globalide) for skin tissue engineering applications. Carbohydr Polym 252:117201

    Article  CAS  PubMed  Google Scholar 

  2. Thapa RK, Kiick KL, Sullivan MO (2020) Encapsulation of collagen mimetic peptide-tethered vancomycin liposomes in collagen-based scaffolds for infection control in wounds. Acta Biomater 103:115

    Article  CAS  PubMed  Google Scholar 

  3. Schwarzer S, James GA, Goeres D, Bjarnsholt T, Vickery K, Percival S, Stoodley P, Schultz G, Jensen SO, Malone M (2020) The efficacy of topical agents used in wounds for managing chronic biofilm infections: a systematic review. J Infect 80:261

    Article  CAS  PubMed  Google Scholar 

  4. Deng Z, Shi F, Zhou Z, Sun F, Sun M-H, Sun Q, Chen L, Li D, Jiang C-Y, Zhao R-Z (2019) M1 macrophage mediated increased reactive oxygen species (ROS) influence wound healing via the MAPK signaling in vitro and in vivo. Toxicol Appl Pharmacol 366:83

    Article  CAS  PubMed  Google Scholar 

  5. Malone-Povolny MJ, Maloney SE, Schoenfisch MH (2019) Nitric Oxide Therapy for Diabetic Wound Healing. Adv Healthc Mater 8:1801210

    Article  Google Scholar 

  6. Huang S, Liu H, Liao K, Hu Q, Guo R, Deng K, Appl ACS (2020) Functionalized GO nanovehicles with nitric oxide release and photothermal activity-based hydrogels for bacteria-infected wound healing. Mater Interfaces 12:28952

    CAS  Google Scholar 

  7. Karki S, Kim H, Na S-J, Shin D, Jo K, Lee J (2016) Thin films as an emerging platform for drug delivery. Asian J Pharm 11:559

    Google Scholar 

  8. Rial-Hermida MI, Rey-Rico A, Blanco-Fernandez B, Carballo-Pedrares N, Byrne EM, Mano JF, Biomater ACS (2021) Recent progress on polysaccharide-based hydrogels for controlled delivery of therapeutic biomolecules. Sci Eng 7:4102

    CAS  Google Scholar 

  9. Gaspar-Pintiliescu A, Stanciuc A-M, Craciunescu O (2019) Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: a review. Int J Biol Macromol 138:854

    Article  CAS  PubMed  Google Scholar 

  10. Kang JI, Park KM (2021) Advances in gelatin-based hydrogels for wound management. J Mater Chem B 9:1503

    Article  CAS  PubMed  Google Scholar 

  11. Abdollahi S, Raoufi Z (2022) Gelatin/Persian gum/bacterial nanocellulose composite films containing Frankincense essential oil and Teucrium polium extract as a novel and bactericidal wound dressing. J Drug Deliv Sci Technol. 72:103423

    Article  CAS  Google Scholar 

  12. Wang W, Sheng H, Cao D, Zhang F, Zhang W, Yan F, Ding D, Cheng N (2022) Cross-linking and characterisation of gelatin matrices for biomedical applications. Int J Biol Macromol 200:77

    Article  CAS  PubMed  Google Scholar 

  13. Dumitriu S, Popa VI (2013) Polymeric biomaterials. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  14. Kuijpers AJ, Engbers GH, Krijgsveld J, Zaat SA, Dankert J, Feijen J (2000) Cross-linking and characterisation of gelatin matrices for biomedical applications. J Biomater Sci Polym Ed 11:225

    Article  CAS  PubMed  Google Scholar 

  15. Pereda M, Ponce A, Marcovich N, Ruseckaite R, Martucci J (2011) Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll 25:1372

    Article  CAS  Google Scholar 

  16. Nasirzadeh A, Javidtash I, Riasat M (2005) Identification of Echinops Species and Study on some Biological Characteristics of Larinus vulpes Oliv. as Manna Producer in Fars Province. Iran J Med Aromat Plants Res (IJMAPR) 21(3): 335–346

    Google Scholar 

  17. Mahvelati SF, Tonekaboni H, Javadzadeh M, Ghofrani M (2007) The efficacy of propofol and midazolam in treatment of refractory status epilepticus in children. Iran J Med Sci 32(2)

  18. Hamedi A, Farjadian S, Karami MR (2015) Immunomodulatory properties of Trehala manna decoction and its isolated carbohydrate macromolecules. J Ethnopharmacol 162:121

    Article  CAS  PubMed  Google Scholar 

  19. Tabatabaei SD, Ghiasi F, Gahruie HH, Hosseini SMH (2022) Effect of emulsified oil droplets and glycerol content on the physicochemical properties of Persian gum-based edible films. Polym Test 106:107427

    Article  CAS  Google Scholar 

  20. Amirsadeghi A, Jafari A, Hashemi S-S, Kazemi A, Ghasemi Y, Derakhshanfar A, Shahbazi M-A, Niknezhad SV (2021) Sprayable antibacterial Persian gum-silver nanoparticle dressing for wound healing acceleration. Mater Today Commun 27:102225

    Article  CAS  Google Scholar 

  21. Gahruie HH, Mirzapour A, Ghiasi F, Eskandari MH, Moosavi-Nasab M, Hosseini SMH (2022) Development and characterization of gelatin and Persian gum composite edible films through complex coacervation. LWT 153:112422

    Article  Google Scholar 

  22. Khodaei D, Oltrogge K, Hamidi-Esfahani Z (2020) Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and, Persian gum. Lwt 117:108617

    Article  CAS  Google Scholar 

  23. Iranshahy M, Iranshahi M (2011) Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)—a review. J Ethnopharmacol 134:1

    Article  CAS  PubMed  Google Scholar 

  24. Mahendra P, Bisht S (2012) Ferula asafoetida: Traditional uses and pharmacological activity. Pharmacogn Rev 6:141

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kajimoto T, Yahiro K, Nohara T (1989) Sesquiterpenoid and disulphide derivatives from Ferula assa-foetida. Phytochemistry 28:1761

    Article  CAS  Google Scholar 

  26. Zomorodian K, Saharkhiz J, Pakshir K, Immeripour Z, Sadatsharifi A (2018) The composition, antibiofilm and antimicrobial activities of essential oil of Ferula assa-foetida oleo-gum-resin. Biocatal Agric Biotechnol 14:300

    Article  Google Scholar 

  27. ASTM D (2002) Standard test method for tensile properties of thin plastic sheeting

  28. Singh BN, Veeresh V, Mallick SP, Jain Y, Sinha S, Rastogi A, Srivastava P (2019) Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Int J Biol Macromol 133:817

    Article  CAS  PubMed  Google Scholar 

  29. Sakthiguru N, Sithique MA (2020) Fabrication of bioinspired chitosan/gelatin/allantoin biocomposite film for wound dressing application. Int J Biol Macromol 152:873

    Article  CAS  PubMed  Google Scholar 

  30. Kenawy E, Omer A, Tamer T, Elmeligy M, Eldin MM (2019) Fabrication of biodegradable gelatin/chitosan/cinnamaldehyde crosslinked membranes for antibacterial wound dressing applications. Int J Biol Macromol 139:440

    Article  CAS  PubMed  Google Scholar 

  31. Sribalan R, Kirubavathi M, Banuppriya G, Padmini V (2015) Synthesis and biological evaluation of new symmetric curcumin derivatives. Bioorg Med Chem 25:4282

    Article  CAS  Google Scholar 

  32. Augustine R, Kalarikkal N, Thomas S (2015) An in vitro method for the determination of microbial barrier property (MBP) of porous polymeric membranes for skin substitute and wound dressing applications. Tissue Eng Regen Med 12:12

    Article  CAS  Google Scholar 

  33. Barzegar H, Mehrnia MA, Hassanzadeh M (2019) Characterization of physicochemical and mechanical properties of biodegradable hemicellulose-gelatin films. Iran J Biosyst Eng 49:609

    Google Scholar 

  34. Abbasi S, Mohammadi S, Rahimi S (2011) Partial substitution of gelatin with Persian gum and use of Olibanum in production of functional pastille. Iran J Biosyst Eng 42:121

    Google Scholar 

  35. Pelissari FM, Grossmann MV, Yamashita F, Pineda EAG (2009) Antimicrobial, mechanical, and barrier properties of cassava starch− chitosan films incorporated with oregano essential oil. J Agric Food Chem 57:7499

    Article  CAS  PubMed  Google Scholar 

  36. Ahmed J, Mulla M, Joseph A, Ejaz M, Maniruzzaman M (2020) Zinc oxide/clove essential oil incorporated type B gelatin nanocomposite formulations: a proof-of-concept study for 3D printing applications. Food Hydrocoll 98:105256

    Article  CAS  Google Scholar 

  37. Aguirre A, Borneo R, León AE (2013) Antimicrobial, mechanical and barrier properties of triticale protein films incorporated with oregano essential oil. Food Biosci 1:2

    Article  CAS  Google Scholar 

  38. Zeid A, Karabagias IK, Nassif M, Kontominas MG (2019) Preparation and evaluation of antioxidant packaging films made of polylactic acid containing thyme, rosemary, and oregano essential oils. J Food Process Preserv 43:e14102

    Article  CAS  Google Scholar 

  39. Shaw GS (2016) Preparation and Characterization of Gelatin-Tamarind Gum/Carboxymethyl Tamarind Gum Based Phase Separated Hydrogels and Films for Tissue Engineering Application

  40. Souza VGL, Pires JRA, Rodrigues C, Rodrigues PF, Lopes A, Silva RJ, Caldeira J, Duarte MP, Fernandes FB, Coelhoso IM (2019) Physical and morphological characterization of chitosan/montmorillonite films incorporated with ginger essential oil. Coat 9:700

    Article  CAS  Google Scholar 

  41. Šuput D, Lazić V, Pezo L, Markov S, Vaštag Ž, Popović L, Radulović A, Ostojić S, Zlatanović S, Popović S (2016) Characterization of starch edible films with different essential oils addition. Polish J Food Nutr Sci 66:277

    Article  Google Scholar 

  42. Morgado PI, Miguel SP, Correia IJ, Aguiar-Ricardo A (2017) Ibuprofen loaded PVA/chitosan membranes: a highly efficient strategy towards an improved skin wound healing. Carbohydr Polym 159:136

    Article  CAS  PubMed  Google Scholar 

  43. Sung JH, Hwang M-R, Kim JO, Lee JH, Kim YI, Kim JH, Chang SW, Jin SG, Kim JA, Lyoo WS (2010) Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int J Pharm 392:232

    Article  CAS  PubMed  Google Scholar 

  44. Amjadi S, Nazari M, Alizadeh SA, Hamishehkar H (2020) Multifunctional betanin nanoliposomes-incorporated gelatin/chitosan nanofiber/ZnO nanoparticles nanocomposite film for fresh beef preservation. Meat Sci 167:108161

    Article  CAS  PubMed  Google Scholar 

  45. Qiao C, Ma X, Zhang J, Yao J (2017) Molecular interactions in gelatin/chitosan composite films. Food Chem 235:45

    Article  CAS  PubMed  Google Scholar 

  46. Kamari A, Phillip E (2018) Chitosan, gelatin and methylcellulose films incorporated with tannic acid for food packaging. Int J Biol Macromol 120:1119

    Article  PubMed  Google Scholar 

  47. Taheri P, Jahanmardi R, Koosha M, Abdi S (2020) Physical, mechanical and wound healing properties of chitosan/gelatin blend films containing tannic acid and/or bacterial nanocellulose. Int J Biol Macromol 154:421

    Article  CAS  PubMed  Google Scholar 

  48. Upadhyay PK (2017) Pharmacological activities and therapeutic uses of resins obtained from Ferula asafoetida Linn.: A Review. Inte J Green Pharm (IJGP) 11(02)

  49. Nuvoli L, Conte P, Fadda C, Ruiz JAR, García JM, Baldino S, Mannu A (2021) Structural, thermal, and mechanical properties of gelatin-based films integrated with tara gum. Polymer 214:123244

    Article  CAS  Google Scholar 

  50. Amalraj A, Haponiuk JT, Thomas S, Gopi S (2020) Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. Int J Biol Macromol 151:366

    Article  CAS  PubMed  Google Scholar 

  51. Mathew S, Abraham TE (2008) Characterisation of ferulic acid incorporated starch–chitosan blend films. Food Hydrocoll 22:826

    Article  CAS  Google Scholar 

  52. Olad A, Hagh HBK (2019) Graphene oxide and amin-modified graphene oxide incorporated chitosan-gelatin scaffolds as promising materials for tissue engineering. Compos B Eng 162:692

    Article  CAS  Google Scholar 

  53. Wang R, Zhang S, Liu S, Sun Y, Xu H (2023) A contribution to improve barrier properties and reduce swelling ratio of κ-carrageenan film from the incorporation of guar gum or locust bean gum. Polymers 15:1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Oliveira Filho de JG, Deus de IPB, Valadares ACF, Fernandes CC, Estevam EBB, Egea MB (2020) Chitosan film with citrus limonia essential oil: physical and morphological properties and antibacterial activity. Colloids Interfaces 4:18

    Article  Google Scholar 

  55. Autian J (1975) Polymers in medicine and surgery. Springer, Baerlin, p 181

    Book  Google Scholar 

  56. Reddy NN, Varaprasad K, Ravindra S, Reddy GS, Reddy K, Reddy KM, Raju KM (2011) Evaluation of blood compatibility and drug release studies of gelatin based magnetic hydrogel nanocomposites. Colloids Surf A Physicochem Eng Asp 385:20

    Article  CAS  Google Scholar 

  57. Singh B, Sharma K, Dutt S (2020) Dietary fiber tragacanth gum based hydrogels for use in drug delivery applications. Bioact Carbohydr Diet Fibre 21:100208

    Article  CAS  Google Scholar 

  58. Natrajan D, Srinivasan S, Sundar K, Ravindran A (2015) Formulation of essential oil-loaded chitosan–alginate nanocapsules. J Food Drug Anal 23:560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhong Z, Wheeler MD, Li X, Froh M, Schemmer P, Yin M, Bunzendaul H, Bradford B, Lemasters JJ (2003) L-Glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent. Curr Opin Clin Nutr Metab Care 6:229

    Article  CAS  PubMed  Google Scholar 

  60. Ahmadabad H, Firizi M, Behnamfar M (2016) Immunostimulatory effects of trehala manna ethanolic extract on splenocytes and peritoneal macrophages in vitro. J Med Plants Nat Prod 1:23

    Google Scholar 

  61. Echigo R, Shimohata N, Karatsu K, Yano F, Kayasuga-Kariya Y, Fujisawa A, Ohto T, Kita Y, Nakamura M, Suzuki S (2012) Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage. J Transl Med 10:1

    Article  Google Scholar 

  62. Rahimi S, Abbasi S, Azizi M, Sahari M (2013) in "1st International e-Conference on Novel Food Processing (IECFP2013). Mashhad–Iran"Ed.^Eds.), Year of Converence

  63. Hussain G, Huang J, Rasul A, Anwar H, Imran A, Maqbool J, Razzaq A, Aziz N, Konuk M, Sun T (2019) Putative roles of plant-derived tannins in neurodegenerative and neuropsychiatry disorders: an updated review. Molecules 24:2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bagheri SM, Hedesh ST, Mirjalili A, Dashti-R MH (2016) Evaluation of anti-inflammatory and some possible mechanisms of antinociceptive effect of Ferula assa foetida oleo gum resin. J Evid Based Complementary Altern Med 21:271

    Article  CAS  PubMed  Google Scholar 

  65. Sefidkon F, Askari F, Mirza M (1998) Essential oil composition of Ferula assa-foetida L. from Iran. J Essent Oil Res 10:687

    Article  CAS  Google Scholar 

  66. Homnan N, Thongpraditchote S, Chomnawang M, Thirapanmethee K (2020) In vitro Anti-inflammatory effects of Thai herb essential oils. Pharm Sci Asia 47(2)

  67. Oüzek G, Schepetkin IA, Utegenova GA, Kirpotina LN, Andrei SR, Oüzek T, Baser KHC, Abidkulova KT, Kushnarenko SV, Khlebnikov AI (2017) Chemical composition and phagocyte immunomodulatory activity of Ferula iliensis essential oils. J Leukoc Biol 101:1361

    Article  Google Scholar 

  68. Ahmed HB, Mikhail MM, Abdallah AE, El-Shahat M, Emam HE (2023) Pyrimidine-5-carbonitrile derivatives as sprout for CQDs proveniences: antitumor and anti-inflammatory potentiality. Bioorg Chem 141:106902

    Article  CAS  PubMed  Google Scholar 

  69. Sirizi MAG, Ghalenoei JA, Allahtavakoli M, Forouzanfar H, Bagheri SM (2023) Anticancer potential of Ferula assa-foetida and its constituents, a powerful plant for cancer therapy. World J Biol Chem 14:28

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mokhtareeizadeh Z, Homayouni Tabrizi M (2022) Optimisation of Ferula assa-foetida-Loaded PLGA Nanoparticles Synthesised and evaluation of putative mechanism for anticancer properties. Mater Technol 37:1954

    Article  CAS  Google Scholar 

  71. Wei X, Zhong M, Wang S, Li L, Song Z-L, Zhang J, Xu J, Fang J (2021) Synthesis and biological evaluation of disulfides as anticancer agents with thioredoxin inhibition. Bioorg Chem 110:104814

    Article  CAS  PubMed  Google Scholar 

  72. Sousa JMSD, Nunes TADL, Rodrigues RRL, Sousa JPAD, Val MDCA, Coelho FADR, Santos ALSD, Maciel NB, Souza VMRD, Machado YAA (2023) Cytotoxic and antileishmanial effects of the monoterpene β-ocimene. Pharm 16:183

    CAS  Google Scholar 

  73. Rosa JM, Bonato LB, Mancuso CB, Martinelli L, Okura MH, Malpass GRP, Granato AC (2018) Antimicrobial wound dressing films containing essential oils and oleoresins of pepper encapsulated in sodium alginate films. Ciência Rural 48:e20170740

    Article  CAS  Google Scholar 

  74. Agwa MM, Sabra S, Atwa NA, Dahdooh HA, Lithy RM, Elmotasem H (2022) Potential of frankincense essential oil-loaded whey protein nanoparticles embedded in frankincense resin as a wound healing film based on green technology. J Drug Deliv Sci Technol 71:103291

    Article  CAS  Google Scholar 

  75. Divya K, Ramalakshmi K, Murthy PS, Rao LJM (2014) Volatile oils from Ferula asafoetida varieties and their antimicrobial activity. LWT - Food Sci Technol 59:774

    Article  CAS  Google Scholar 

  76. Ahmed HB, Attia MA, El-Dars FM, Emam HE (2019) Hydroxyethyl cellulose for spontaneous synthesis of antipathogenic nanostructures:(Ag & Au) nanoparticles versus Ag-Au nano-alloy. Int J Biol Macromol 128:214

    Article  CAS  PubMed  Google Scholar 

  77. Bolling BW (2017) Almond polyphenols: Methods of analysis, contribution to food quality, and health promotion. CRFSFS 16:346

    CAS  Google Scholar 

  78. Kamimoto M, Nakai Y, Tsuji T, Shimamoto T, Shimamoto T (2014) Antiviral effects of persimmon extract on human norovirus and its surrogate, bacteriophage MS2. J Food Sci 79:M941

    Article  CAS  PubMed  Google Scholar 

  79. Ueda K, Kawabata R, Irie T, Nakai Y, Tohya Y, Sakaguchi T (2013) Inactivation of pathogenic viruses by plant-derived tannins: strong effects of extracts from persimmon (Diospyros kaki) on a broad range of viruses. PLoS ONE 8:e55343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Aliasghar Mohammadi from the department of chemical and petroleum engineering, Sharif University of Technology for interpreting the FTIR charts. We also thank Dr. Pejman Rezayati from the department of cellulose technology engineering, Behbahan Khatam Alanbia University of Technology, for providing some laboratory equipment.

Author information

Authors and Affiliations

Authors

Contributions

ZR and SA conceived and planned the project. The experiments were done by ZR, SA and MK. SA and ZR performed statistical analyses. ZR and SA collected the data and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Zeinab Raoufi.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raoufi, Z., Abdollahi, S. Development of Gelatin/Shekar tighal/Persian gum-based films reinforced with Anghozeh oil for potential wound dressing applications. Polym. Bull. (2023). https://doi.org/10.1007/s00289-023-05118-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-023-05118-4

Keywords

Navigation