Skip to main content
Log in

Constraints on \({\rm I}\beta\) cellulose twist from DFT calculations of \(^{13}\hbox {C}\) NMR chemical shifts

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We investigate theoretically the NMR response of twisted configurations of \({\rm I}\beta\) cellulose in the tg conformation. These finite helical angle structures were constructed by a mathematical deformation of zero-angle configurations obtained via the periodic density functional energy minimizations with dispersion corrections (DFT-D2). Subsequent calculations of the \({^{13}\hbox {C}}\) nuclear magnetic resonance chemical shifts \(({\delta}^{13} \hbox {C})\) were compared with experimental findings by Erata et al. (Cellul Commun 4:128–131, 1997) and Kono et al. (Macromolecules 36:5131–5138, 2003). We determine the sensitivity of the NMR chemical shifts to helical deformation of the microfibril and find that a substantial range of helical angle, ±2 degrees/nm, is consistent with current experimental observations, with a most probable angle of ∼0.2 degree/nm. Through exhaustive combinatorial provisional assignments, we also demonstrate that there are different choices of the chemical shift \(({\delta}^{13} \hbox {C})\) assignments which are consistent with the experiments, including ones with lower deviations than existing identifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aabloo A, French AD, Mikelsaar RH, Pertsin AJ (1994) Studies of crystalline native celluloses using potential energy calculations. Cellulose 1:161–168

    Article  CAS  Google Scholar 

  • Adamo C, Barone V (1998) Introduction I exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664–675

    Article  CAS  Google Scholar 

  • Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  Google Scholar 

  • Bachrach SM (2007) Quantum mechanics for organic chemistry. In: Computational organic chemistry, New York, p 811

  • Buhl M, Kaupp M, Malkina OL, Malkin VG (1999) The DFT route to NMR chemical shifts. J Comput Chem 20:91–105

    Article  CAS  Google Scholar 

  • Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996a) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104:5497–5509

    Article  CAS  Google Scholar 

  • Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104:5497–5509

    Article  CAS  Google Scholar 

  • Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F. J Comput Chem 4:294–301. doi:10.1002/jcc.540040303

    Article  CAS  Google Scholar 

  • Erata T, Shikano T, Yunoki S, Takai M (1997) The complete assignment of the 13C CP/MAS NMR spectrum of native cellulose by using 13C labeled glucose. Cellul Commun 4:128–131

    CAS  Google Scholar 

  • Esrafili MD, Ahmadin H (2012) DFT study of \(^{17}\text{O}\), \(^1\text{H}\) and \(^{13}\text{C}\) NMR chemical shifts in two forms of native cellulose, \(\text{I}\alpha\) and \(\text{I}\beta\). Carbohydr Res 347:99–106

    Article  CAS  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS 108(47):E1195–E1203

    Article  Google Scholar 

  • French AD, Johnson GP (2009) Cellulose and the twofold screw axis: modeling and experimental arguments. Cellulose 16:959–973

    Article  CAS  Google Scholar 

  • French AD, Johnson GP (2004a) What crystals of small analogs are trying to tell us about cellulose structure. Cellulose 11:5–22

    Article  CAS  Google Scholar 

  • French AD, Johnson GP (2004b) Advanced conformational energy surfaces for cellobiose. Cellulose 11:449–462

    Article  CAS  Google Scholar 

  • French AD, Johnson GP (2006) Quantum mechanics studies of cellobiose conformations. Can J Chem 84:603–612

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, et al (2009) Gaussian 09 revision B.01. Wallingford, CT

  • Gray DG (1996) Chirality in cellulose and cellulose-based materials. Polym Prepr (Div Polym Sci Am Chem Soc) 37:485–486

    CAS  Google Scholar 

  • Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512–7515

    Article  CAS  Google Scholar 

  • Hadden JA, French AD, Woods RJ (2013) Unraveling cellulose microfibrils: a twisted tale. Biopolymers (Special Issue: 50th Anniversary Special Issue on Glycosciences) 99(10):746–756

    CAS  Google Scholar 

  • Haigler CH, White AR, Brown RM, Cooper KM (1982) Alteration of invivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. J Cell Biol 94:64–69

    Article  CAS  Google Scholar 

  • Hanley SJ, Revol J-F, Godbout L, Gray DG (1997) Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4:209–220

    Article  CAS  Google Scholar 

  • Hirai A, Tuji M, Horii F (1998) Helical sense of ribbon assemblies and splayed microfibrils of bacterial cellulose. SenI Gakkaishi 54:506–510

    Article  CAS  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  • Karadakov PB (2006) Ab initio calculation of NMR shielding constants. In: Webb GA (ed) Modern magnetic resonance. Springer, The Netherlands, pp 63–70

    Chapter  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  • Kono H, Erata T, Takai M (2003) Determination of the through-bond carbon-carbon and carbon-proton connectivities of the native celluloses in the solid state. Macromolecules 36:5131–5138

    Article  CAS  Google Scholar 

  • Krishnan R, Brinkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  • Kubicki JD, Mohamed MN-A, Watts HD (2013a) Quantum mechanical modeling of the structures, energetics and spectral properties of \(\text{I}\alpha\) and \(\text{I}\beta\) cellulose. Cellulose 20:9–23. doi: 10.1007/s10570-012-9838-6

    Article  CAS  Google Scholar 

  • Kubicki JD, Watts HD, Zhao Z, Zhong L (2013b) Quantum mechanical calculations on cellulosewater interactions: structures, energetics, vibrational frequencies and NMR chemical shifts for surfaces of \(\text{I}\alpha\) and \(\text{I}\beta\) cellulose. Cellulose 118. doi:10.1007/s10570-013-0029-x

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose I beta. Carbohydr Res 341:138–152

    Article  CAS  Google Scholar 

  • Nimlos MR, Matthews JF, Crowley MF, Walker RC, Chukkapalli G, Brady JW, Adney WS, Cleary JM, Zhong L, Himmel ME (2007) Molecular modeling suggests induced fit of Family I carbohydrate-binding modules with a broken-chain cellulose surface. Protein Eng Des Sel 20:179–187

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose \(\text{I}\beta\) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Ia from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306

    Article  CAS  Google Scholar 

  • Paavilainen S, Rog T, Vattulainen I (2011) Analysis of twisting of cellulose nanofibrils in atomistic molecular dynamics simulations. J Phys Chem B 115:3747–3755

    Article  CAS  Google Scholar 

  • Papajak E, Zheng J, Xu X et al (2011) Perspectives on basis sets beautiful: seasonal plantings of diffuse basis functions. J Chem Theory Comput 7:3027–3034

    Article  CAS  Google Scholar 

  • Perdew J, Chevary J, Vosko S (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  • Qian X (2008) The effect of cooperativity on hydrogen bonding interactions in native cellulose \(\text{I}\beta\) from ab initio molecular dynamics simulations. Mol Simul 34(2):183–191

    Article  CAS  Google Scholar 

  • Sarotti AM, Pellegrinet SC (2009) A multi-standard approach for GIAO (13)C NMR calculations. J Org Chem 74:7254–7260

    Article  CAS  Google Scholar 

  • Schreckenbach G, Ziegler T (1995) Calculation of NMR shielding tensors using gauge-including atomic orbitals and modern density functional theory. J Phys Chem 99:606611. doi:10.1021/j100002a024

    Article  Google Scholar 

  • Sternberg U, Koch F-T, Priess W, Witter R (2003) Crystal structure refinements of cellulose polymorphs using solid- state \(^{13}\text{C}\) chemical shifts. Cellulose 10:189–199

    Article  CAS  Google Scholar 

  • Taylor RE, French AD, Gamble GR, Himmelsbach DS, Stipanovic RD, Thibodeaux DP, Wakelyn PJ, Dybowski C (2008) \(^1\text{H}\) and \(^{13}\text{C}\) solid-state NMR of gossypium barbadense (Pima) cotton. J Mol Struct 878:177–184

    Article  CAS  Google Scholar 

  • VanderHart DL, Atalla RH (1984) Studies of macrostructure in native cellulose using solid-state \(^{13}\text{C}\) NMR. Macromolecules 17(8):1465–1472

    Article  CAS  Google Scholar 

  • Watts H, Mohamed M, Kubicki J (2011) Comparison of multistandard and TMS-standard calculated NMR shifts for coniferyl alcohol and application of the multistandard method to lignin dimers. J Phys Chem B 115:1958–1970

    Article  CAS  Google Scholar 

  • Watts HD, Mohamed MNA, Kubicki JD (2014) A DFT study of vibrational frequencies and 13C NMR chemical shifts of model cellulosic fragments as a function of size. Cellulose 21(1):53–70

    Article  CAS  Google Scholar 

  • Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260. doi:10.1021/ja00179a005

    Article  CAS  Google Scholar 

  • Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose \(\text{I}\beta\) crystal models by molecular dynamics. Carbohydr Res 341:2521–2530

    Article  CAS  Google Scholar 

  • Yui T, Hayashi S (2007) Molecular dynamics simulations of solvated crystal models of cellulose \(\text{I}_{\alpha}\) and \(\text{IIII}_I\). Biomacromolecules 8:817–824

    Article  CAS  Google Scholar 

  • Yui T, Hayashi S (2009) Structural stability of the solvated cellulose \(\text{IIII}_I\) crystal models: a molecular dynamics study. Cellulose 16:151–165

    Article  CAS  Google Scholar 

  • Zhao Z, Shklyaev OE, Nili A, Mohamed MN-A, Kubicki JD, Crespi VH, Zhong L (2013) Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis. J Phys Chem A 117:2580–2589

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001090. Computational support was provided by the Research Computation and Cyberinfrastructure group at The Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg E. Shklyaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shklyaev, O.E., Kubicki, J.D., Watts, H.D. et al. Constraints on \({\rm I}\beta\) cellulose twist from DFT calculations of \(^{13}\hbox {C}\) NMR chemical shifts. Cellulose 21, 3979–3991 (2014). https://doi.org/10.1007/s10570-014-0448-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0448-3

Keywords

Navigation