Skip to main content
Log in

The vane method and kinetic modeling: shear rheology of nanofibrillated cellulose suspensions

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We conduct rheological characterization of nanofibrillated cellulose (NFC) suspensions, a highly non-Newtonian complex fluid, at several concentrations. Special care is taken to cope with the prevalent problems of time scale issues, wall depletion and confinement effects. We do this by combining the wide-gap vane geometry, extremely long measurement times, and modeling. We take into account the wide-gap related stress heterogeneity by extending upon mainstream methods and apply a gap correction. Furthermore, we rationalize the experimental data through a simple viscous structural model. With these tools we find that, owing to the small size of the particles subjected to Brownian motion, the NFC suspensions exhibit a critical shear rate, where the flow curve experiences a turning point. This makes the steady state of these suspensions at low shear rates non-unique. To optimize various mixing and pumping applications, such history dependent tendency of NFC suspensions to shear band needs to be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, Doublier JL (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80(3):677–686

    Article  CAS  Google Scholar 

  • Ahola S, Myllytie P, Österberg M, Teerinen T, Laine J (2008) Effect of polymer adsorption on cellulose nanofibril water binding capacity and aggregation. BioResources 3(4):1315–1328

    Google Scholar 

  • Ancey C (2005) Solving the Couette inverse problem using a wavelet-vaguelette decomposition. J Rheol 49(2):441–460

    Article  CAS  Google Scholar 

  • Barnes HA (1995) A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J Non-Newtonian Fluid Mech 56(3):221–251

    Article  CAS  Google Scholar 

  • Barnes HA (2000) Measuring the viscosity of large-particle (and flocculated) suspensions: a note on the necessary gap size of rotational viscometers. J Non-Newtonian Fluid Mech 94(2):213–217

    Article  CAS  Google Scholar 

  • Bennington CPJ, Kerekes RJ, Grace JR (1990) The yield stress of fibre suspensions. Can J Chem Eng 68(5):748–757

    Article  CAS  Google Scholar 

  • Berli CLA, Quemada D (2000) Rheological modeling of microgel suspensions involving solid-liquid transition. Langmuir 16(21):7968–7974

    Article  CAS  Google Scholar 

  • Björkman U (2006) The metarheology of crowded fibre suspensions. Ann Trans Nordic Rheol Soc 14:69

    Google Scholar 

  • Bonn D, Denn MM (2009) Yield stress fluids slowly yield to analysis. Science 324(5933):1401–1402

    Article  CAS  Google Scholar 

  • Buscall R (2010) Letter to the editor: wall slip in dispersion rheometry. J Rheol 54(6):1177–1183

    Article  CAS  Google Scholar 

  • Cohen SD, Hindmarsh AC (1996) CVODE, a stiff/nonstiff ODE solver in C. Comp Phys 10:138–143

    Article  Google Scholar 

  • Coussot P (2005) Rheometry of pastes, suspensions, and granular materials: applications in industry and environment. Wiley, Hoboken

    Book  Google Scholar 

  • Coussot P, Ovarlez G (2010) Physical origin of shear-banding in jammed systems. Eur Phys J E 33(3):183–188

    Article  CAS  Google Scholar 

  • Coussot P, Nguyen Q, Huynh HT, Bonn D (2002a) Avalanche behavior in yield stress fluids. Phys Rev Lett 88(17):175501

    Article  Google Scholar 

  • Coussot P, Nguyen QD, Huynh HT, Bonn D (2002b) Viscosity bifurcation in thixotropic, yielding fluids. J Rheol 46(3):573–589

    Article  CAS  Google Scholar 

  • Coussot P, Roussel N, Jarny S, Chanson H (2005) Continuous or catastrophic solid-liquid transition in jammed systems. Phys Fluids 17(1):011704

    Article  Google Scholar 

  • Damani R, Powell RL, Hagen N (1993) Viscoelastic characterization of medium consistency pulp suspensions. Can J Chem Eng 71(5):676–684

    Article  CAS  Google Scholar 

  • Derakhshandeh B, Hatzikiriakos SG, Bennington CPJ (2010) Rheology of pulp suspensions using ultrasonic doppler velocimetry. Rheologica Acta 49(11–12):1127–1140

    Article  CAS  Google Scholar 

  • Divoux T, Tamarii D, Barentin C, Manneville S (2010) Transient shear banding in a simple yield stress fluid. Phys Rev Lett 104(20):208301

    Article  Google Scholar 

  • Divoux T, Grenard V, Manneville S (2013) Rheological hysteresis in soft glassy materials. Phys Rev Lett 110(1):018304

    Article  Google Scholar 

  • Dzuy NQ, Boger DV (1983) Yield stress measurement for concentrated suspensions. J Rheol 27(4):321–349

    Article  Google Scholar 

  • Dzuy NQ, Boger DV (1985) Direct yield stress measurement with the vane method. J Rheol 29(3):335–347

    Article  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  • Eriksen O, Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nordic Pulp Paper Res J 23(3):299–304

    Article  CAS  Google Scholar 

  • Fielding SM (2007) Complex dynamics of shear banded flows. Soft Matter 3(10):1262–1279

    Article  CAS  Google Scholar 

  • Fisher DT, Clayton SA, Boger DV, Scales PJ (2007) The bucket rheometer for shear stress-shear rate measurement of industrial suspensions. J Rheol 51(5):821–831

    Article  CAS  Google Scholar 

  • Fukuzumi H, Tanaka R, Saito T, Isogai A (2014) Dispersion stability and aggregation behavior of TEMPO-oxidized cellulose nanofibrils in water as a function of salt addition. Cellulose 21(3):1553–1559

    Article  CAS  Google Scholar 

  • Goyon J, Colin A, Ovarlez G, Ajdari A, Bocquet L (2008) Spatial cooperativity in soft glassy flows. Nature 454(7200):84–87

    Article  CAS  Google Scholar 

  • Hayaka F, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93(1):172–177

    Article  Google Scholar 

  • Heirman G, Vandewalle L, Van Gemert D, Wallevik O (2008) Integration approach of the couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer. J Non-Newtonian Fluid Mech 150(2):93–103

    Article  CAS  Google Scholar 

  • Illa X, Puisto A, Lehtinen A, Mohtaschemi M, Alava MJ (2013) Transient shear banding in time-dependent fluids. Phys Rev E 87:022307

    Article  Google Scholar 

  • Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19(1):137–145

    Article  CAS  Google Scholar 

  • Ishii D, Saito T, Isogai A (2011) Viscoelastic evaluation of average length of cellulose nanofibers prepared by tempo-mediated oxidation. Biomacromolecules 12(3):548–550

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  CAS  Google Scholar 

  • Jones E, Oliphant T, Peterson P, et al. (2001) SciPy: open source scientific tools for Python.

  • Labanda J, Marco P, Llorens J (2004) Rheological model to predict the thixotropic behaviour of colloidal dispersions. Colloids Surf A Physicochem Eng Asp 249(1):123–126

    Article  CAS  Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15(3):425–433

    Article  CAS  Google Scholar 

  • Lehtinen A, Puisto A, Illa X, Mohtaschemi M, Alava MJ (2013) Transient shear banding in viscoelastic maxwell fluids. Soft Matter 9:8041–8049

    Article  CAS  Google Scholar 

  • Lowys MP, Desbrieres J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions. role of polymeric additives. Food Hydrocoll 15(1):25–32

    Article  CAS  Google Scholar 

  • Martin JD, Hu YT (2012) Transient and steady-state shear banding in aging soft glassy materials. Soft Matter 8(26):6940–6949

    Article  CAS  Google Scholar 

  • Mewis J, Wagner N (2009) Thixotropy. Adv Colloid Interface Sci 147:214–227

    Article  Google Scholar 

  • Mohtaschemi M, Dimic-Misic K, Puisto A, Korhonen M, Maloney T, Paltakari J, Alava MJ (2014a) Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer. Cellulose 21:1305–1312

    Article  CAS  Google Scholar 

  • Mohtaschemi M, Puisto A, Illa X, Alava MJ (2014b) Rheology dynamics of aggregating colloidal suspensions. Soft Matter 10:2971–2981

    Article  CAS  Google Scholar 

  • Møller PCF, Fall A, Bonn D (2009a) Origin of apparent viscosity in yield stress fluids below yielding. EPL (Europhys Lett) 87(3):38004

    Article  Google Scholar 

  • Møller PCF, Fall A, Chikkadi V, Derks D, Bonn D (2009b) An attempt to categorize yield stress fluid behaviour. Philos Trans R Soc A 367(1909):5139–5155

    Article  Google Scholar 

  • Mosse WKJ, Boger DV, Garnier G (2012) Avoiding slip in pulp suspension rheometry. J Rheol 56(6):1517–1533

    Article  CAS  Google Scholar 

  • Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69(11):1958–1961

    Article  CAS  Google Scholar 

  • Ovarlez G, Rodts S, Ragouilliaux A, Coussot P, Goyon J, Colin A (2008) Wide-gap Couette flows of dense emulsions: local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging. Phys Rev E 78(3):036307

    Article  CAS  Google Scholar 

  • Ovarlez G, Tocquer L, Bertrand F, Coussot P (2013) Rheopexy and tunable yield stress of carbon black suspensions. Soft Matter 9(23):5540–5549

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  Google Scholar 

  • Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR (1992) A constitutive equation for concentrated suspensions that accounts for shear induced particle migration. Phys Fluids A 4:30–40

    Article  CAS  Google Scholar 

  • Roussel N, Le Roy R, Coussot P (2004) Thixotropy modelling at local and macroscopic scales. J Non-Newtonian Fluid Mech 117(2):85–95

    Article  CAS  Google Scholar 

  • Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour. Cellulose 19(3):647–659

    Article  CAS  Google Scholar 

  • Saarinen T, Haavisto S, Sorvari A, Salmela J, Seppälä J (2013) The effect of wall depletion on the rheology of microfibrillated cellulose water suspensions by optical coherence tomography. Cellulose 21(3):1261–1275

    Article  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from tempo-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491

    Article  CAS  Google Scholar 

  • Swerin A, Powell RL, Ödberg L (1992) Linear and nonlinear dynamic viscoelasticity of pulp fiber suspensions. Nordic Pulp Paper Res J 7(3):126–132

    Article  CAS  Google Scholar 

  • Teng H, Zhang J (2013) Modeling the viscoelasto-plastic behavior of waxy crude. Pet Sci 10(3):395–401

    Article  Google Scholar 

  • Turbak A, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Sci, Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Varanasi S, He R, Batchelor W (2013) Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 20(4):1885–1896

    Article  CAS  Google Scholar 

  • Yeow YL, Ko WC, Tang PPP (2000) Solving the inverse problem of Couette viscometry by Tikhonov regularization. J Rheol 44(6):1335–1351

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Effnet program in the Finnish Forest Cluster Ltd, and EU framework 7 program SUNPAP. Also, the support from the Academy of Finland through the COMP center of excellence and the project number 140268, within the framework of the International Doctoral Programme in Bioproducts Technology (PaPSaT) and Graduate School in Chemical Engineering (GSCE) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Mohtaschemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohtaschemi, M., Sorvari, A., Puisto, A. et al. The vane method and kinetic modeling: shear rheology of nanofibrillated cellulose suspensions. Cellulose 21, 3913–3925 (2014). https://doi.org/10.1007/s10570-014-0409-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0409-x

Keywords

Navigation