Skip to main content

Advertisement

Log in

Wound debridement and antibiofilm properties of gamma-ray DMAEMA-grafted onto cotton gauzes

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cotton gauze fabric was functionalized with 2-(dimethylamino)ethyl methacrylate (DMAEMA) with the aim of developing wound dressings with antibiofilm activity and tunable debriding activity. Cotton-g-DMAEMA gauzes were prepared via one-step grafting (direct method) using 60Co γ-rays as source to initiate the polymerization process. The effects of absorbed dose, dose rate, and monomer concentration on the degree of grafting were evaluated in detail. Some cotton-g-DMAEMA gauzes were subsequently quaternized with methyl iodide. Grafting of DMAEMA and sequential quaternization were confirmed by FTIR-ATR spectroscopy; thermal properties were analyzed using TGA, and morphology by scanning electron microscopy. Grafting of DMAEMA gauzes enhanced blood absorption and collagenase activity, while further quaternization led to a remarkable inhibition of the proteinase activity. Their antimicrobial features were analyzed by evaluating their biofilm inhibiting and biofilm eradicating properties in an in vitro chronic wound model. Although the non-quaternized gauzes only displayed moderate biofilm inhibitory properties at best, the quaternized cotton-g-DMAEMA bearing the highest content of DMAEMA displayed strong biofilm inhibiting and biofilm eradicating properties. This indicates that quaternized cotton-g-DMAEMA gauzes are less prone to be colonized by bacteria and can notably reduce the number of colonies in an infected wound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarez-Lorenzo C, Bucio E, Burillo G, Concheiro A (2010) Medical devices modified at the surface by g-ray grafting for drug loading and delivery. Expert Opin Drug Deliv 7:173–185

    Article  CAS  Google Scholar 

  • Arnaud F, Parreño-Sadalan D, Tomori T, Delima MG, Teranishi K, Carr W, McNamee G, McKeague A, Govindaraj K, Beadling C, Lutz C, Sharp T, Mog S, Burris D, McCarron R (2009) Comparison of 10 hemostatic dressings in a groin transaction model in swine. J Trauma 67:848–855

    Article  Google Scholar 

  • Bank U, Kruger S, Langner J, Roessner A (2000) Peptidases and peptidase inhibitors in the pathogenesis of diseases: disturbances in the ubiquitin-mediated proteolytic system. Protease–antiprotease imbalance in inflammatory reactions. Role of cathepsins in tumour progression. Adv Exp Med Biol 477:349–378

    Article  CAS  Google Scholar 

  • Brackman G, De Meyer L, Nelis HJ, Coenye T (2013) Biofilm inhibitory and eradicating activity of wound care products against Staphylococcus aureus and Staphylococcus epidermidis biofilms in an in vitro chronic wound model. J Appl Microbiol 114:1833–1842

    Article  CAS  Google Scholar 

  • Bucio E, Aliev R, Burillo G (2002) Radiation grafting of N,N-dimethylaminoethyl methacrylate and 4-vinylpyridine onto polypropylene by the one- and two-step. Poly Bull 47:571–577

    Article  CAS  Google Scholar 

  • Burillo G, Bucio E, Arenas E, Lopez GP (2007) Temperature and pH-sensitive swelling behavior of binary DMAEMA/4VP grafts on poly(propylene) films. Macromol Mater Eng 292:214–219

    Article  CAS  Google Scholar 

  • Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34:8533–8554

    Article  CAS  Google Scholar 

  • Contreras-García A, Bucio E, Brackman G, Coenye T, Concheiro A, Alvarez-Lorenzo C (2011) Biofilm inhibition and drug-eluting properties of novel DMAEMA-modified polyethylene and silicone rubber surfaces. Biofouling 27:123–135

    Article  Google Scholar 

  • De Prijck K, De Smet N, Coenye T, Schacht E, Nelis HJ (2010) Prevention of Candida albicans biofilm formation by covalently bound dimethylaminoethyl methacrylate and polyethylenimine. Mycopathologia 170:213–221

    Article  CAS  Google Scholar 

  • Desmet G, Takács E, Wojnárovits L, Borsa J (2011) Cellulose functionalization via high-energy irradiation-initiated grafting of glycidyl methacrylate and cyclodextrin immobilization. Radiat Phys Chem 80:1358–1362

    Article  CAS  Google Scholar 

  • Edwards JV, Howley PS (2007) Human neutrophil elastase and collagenase sequestration with phosphorylated cotton wound dressings. J Biomed Mater Res 83A:446–454

    Article  CAS  Google Scholar 

  • Edwards JV, Howley P, Prevost N, Condon B, Arnold J, Diegelmann R (2009) Positively and negatively charged ionic modifications to cellulose assessed as cotton-based protease-lowering and hemostatic wound agents. Cellulose 16:911–921

    Article  CAS  Google Scholar 

  • Eming SA, Smola-Hess S, Kurschat P, Hirche D, Krieg T, Smola H (2006) A novel property of povidone–iodine: inhibition of excessive protease levels in chronic non-healing wounds. J Invest Dermatol 126:2731–2733

    Article  CAS  Google Scholar 

  • Fouda MMG, El Shafei A, Sharaf S, Hebeish A (2009) Microwave curing for producing cotton fabrics with easy care and antibacterial properties. Carbohydr Polym 77:651–655

    Article  CAS  Google Scholar 

  • Garcia-Fernandez MJ, Brackman G, Coenye T, Concheiro A, Alvarez-Lorenzo C (2013) Antiseptic cyclodextrin-functionalized hydrogels and gauzes for loading and delivery of benzalkonium chloride. Biofouling 29:261–271

    Article  CAS  Google Scholar 

  • Goel NK, Kumar V, Rao MS, Bhardwaj YK, Sabharwal S (2011) Functionalization of cotton fabrics by radiation induced grafting of quaternary salt to impart antibacterial property. Radiat Phys Chem 80:1233–1241

    Article  CAS  Google Scholar 

  • Gottenbos B, van der Mei HC, Klatter F, Nieuwenhuis P, Busscher HJ (2002) In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials 23:1417–1423

    Article  CAS  Google Scholar 

  • Hiriart-Ramírez E, Contreras-García A, Garcia-Fernandez MJ, Concheiro A, Alvarez-Lorenzo C, Bucio E (2012) Radiation grafting of glycidyl methacrylate onto cotton gauzes for functionalization with cyclodextrins and elution of antimicrobial agents. Cellulose 19:2165–2177

    Article  Google Scholar 

  • Hong KH (2014) Preparation and properties of multifunctional cotton fabrics treated by phenolic acids. Cellulose 21:2111–2117

  • Hopf HW, Hunt TK, West JM, Blomquist P, Goodson WH, Jensen JA, Jonsson K, Paty PB, Rabkin JM, Upton RA, von Smitten K, Whitney JD (1997) Wound tissue oxygen tension predicts the risk of wound infection in surgical patients. Arch Surg 132:997–1004

    Article  CAS  Google Scholar 

  • Hosoya T, Kawamoto H, Saka S (2007) Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. J Anal Appl Pyrol 80:118–125

    Article  CAS  Google Scholar 

  • Kirketerp-Møller K, Zulkowski K, James G (2011) Chronic wound colonization, infection, and biofilms. In: Bjarnsholt T, Jensen PØ, Moser C, Høiby N (eds) Biofilm infections, chap 2. Springer, Berlin, pp 11–24

    Chapter  Google Scholar 

  • Kumar V, Bhardwaj YK, Rawat KP, Sabharwal S (2005) Radiation-induced grafting of vinyl benzyl trimethyl ammonium chloride (VBT) onto cotton fabric and study of its anti-bacterial activities. Radiat Phys Chem 73:175–182

    Article  CAS  Google Scholar 

  • Lawrence JC (1994) A Symposium: wound infection and occlusion-separating fact from fiction. Am J Surg 167:S21–S24

    Article  Google Scholar 

  • Mizokami F, Murasawa Y, Furuta K, Isogai Z (2012) Iodoform gauze removes necrotic tissue from pressure ulcer wounds by fibrinolytic activity. Biol Pharm Bull 35:1048–1053

    Article  CAS  Google Scholar 

  • Rawlinson LB, Ryan SM, Mantovani G, Syrett JA, Haddleton DM, Brayden DJ (2010) Antibacterial effects of poly(2-(dimethylaminoethyl)methacrylate) against selected gram-positive and gram-negative bacteria. Biomacromolecules 11:443–453

    Article  CAS  Google Scholar 

  • Reddy M, Gill SS, Kalkar SR, Wu W, Anderson PJ, Rochon PA (2008) Treatment of pressure ulcers. A systematic review. JAMA 300:2647–2662

    Article  CAS  Google Scholar 

  • Robson MC, Stenberg BD, Heggers JP (1990) Wound healing alterations caused by infection. Clin Plast Surg 17:485–492

    CAS  Google Scholar 

  • Sen CK (2009) Wound healing essentials: let there be oxygen. Wound Repair Regen 17:1–18

    Article  Google Scholar 

  • Senuma M, Iwakura M, Ebihara S, Keriyama K, Shimurab Y (1993) Antibacterial activity of copolymers of trialkyl(4-vinylbenzyl)ammonium chlorides with acrylonitrile. Angew Makromol Chem 204:119–124

    Article  CAS  Google Scholar 

  • Shen DK, Gua S, Bridgwater AV (2010) The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose. Carbohydr Polym 83:39–45

    Article  Google Scholar 

  • Shi L, Ermis R, Kiedaisch B, Carson D (2010) The effect of various wound dressings on the activity of debriding enzymes. Adv Skin Wound Care 23:456–462

    Article  Google Scholar 

  • Stadelmann WK, Digenis AG, Tobin GR (1998) Impediments to wound healing. Am J Surg 176:39S–47S

    Article  CAS  Google Scholar 

  • Titaux GA, Contreras-García A, Bucio E (2009) Surface modification by γ-ray-induced grafting of PDMAEMA/PEGMEMA onto PE films. Radiat Phys Chem 78:485–488

    Article  CAS  Google Scholar 

  • Venkataraman S, Zhang Y, Liu L, Yang YY (2010) Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures. Biomaterials 31:1751–1756

    Article  CAS  Google Scholar 

  • Verma SK, Kaur I (2012) Gamma-induced polymerization and grafting of a novel phosphorous-, nitrogen-, and sulfur-containing monomer on cotton fabric to impart flame retardancy. J Appl Polym Sci 125:1506–1512

    Article  CAS  Google Scholar 

  • Wiegand C, White RJ (2013) Binding and inhibition of protease enzymes, including MMPs, by a superabsorbent dressing in vitro. J Wound Care 22:221–225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to M. Cruz, F. García and B. Leal from ICN-UNAM for technical assistance. This work was supported by DGAPA-UNAM Grant IN200714 and CONACYT-CNPq Project 174378 Mexico, MICINN (SAF2011-22771) Spain and FEDER. Authors also thank “Red iberoamericana de nuevos materiales para el diseño de sistemas avanzados de liberación de fármacos en enfermedades de alto impacto socioeconómico” (RIMADEL) of the Ibero-American Programme for Science, Technology and Development (CYTED) and funding by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen, SBO programme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Bucio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luna-Straffon, M.A., Contreras-García, A., Brackman, G. et al. Wound debridement and antibiofilm properties of gamma-ray DMAEMA-grafted onto cotton gauzes. Cellulose 21, 3767–3779 (2014). https://doi.org/10.1007/s10570-014-0371-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0371-7

Keywords

Navigation