Skip to main content
Log in

Poly(N-vinyl caprolactam-co-maleic anhydride)-Grafted Cotton Gauze with Antimicrobial Properties for Their Potential Use as Wound Dressings

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Medical cotton gauzes were modified by grafting poly(N-vinylcaprolactam-co-maleic anhydride) (gauze-g-(PVCL-co-MA)) through free radical polymerization to prepare a novel wound dressing with antimicrobial and drug delivery capabilities. Several gauze-g-(PVCL-co-MA) were synthesized, each characterized by distinct grafting percentage of 23, 40, and 100% labeled as VMG1, VMG2, and VMG3, respectively. Polymer grafting was verified using methods such as Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric analysis (TGA), Scanning Electronic Microscopy (SEM), and swelling studies. The grafted cotton gauzes were loaded with vancomycin and tested as drug-eluting systems, exhibited considerable loading capacity and over 80% release. The antibacterial activity was evaluated against S. aureus (ATCC 29213) according to the Japanese Industrial Standard JIS Z 2801 method. They showed growth inhibition for this microorganism. Moreover, they showed good biocompatibility for the 1132SK and SaOS-2 cell lines. These results suggest that the gauze-g-(PVCL-co-MA) could be used as antimicrobial and drug-eluting wound dressings in the biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data supporting this study's findings are available from the corresponding author, Carrillo-Rodríguez J.C., upon reasonable request.

References

  1. E. Rezvani Ghomi, S. Khalili, S. NouriKhorasani, R. EsmaeelyNeisiany, S. Ramakrishna, J Appl Polym Sci 136, 47738 (2019). https://doi.org/10.1002/app.47738

    Article  CAS  Google Scholar 

  2. A. Gaspar-Pintiliescu, A.M. Stanciuc, O. Craciunescu, Int. J. Biol. Macromol. 138, 854 (2019). https://doi.org/10.1016/j.ijbiomac.2019.07.155

    Article  CAS  PubMed  Google Scholar 

  3. S. Patel, S. Srivastava, M.R. Singh, D. Singh, Biomed. Pharmacother. 112, 108615 (2019). https://doi.org/10.1016/j.biopha.2019.108615

    Article  CAS  PubMed  Google Scholar 

  4. P. Bruin, M.F. Jonkman, H.J. Meijer, A.J. Pennings, J. Biomed. Mater. Res. 24, 217 (1990). https://doi.org/10.1002/jbm.820240208

    Article  CAS  PubMed  Google Scholar 

  5. M. Goodarz, A. Behzadnia, H. Mohammadi, Fash. Text. 9, 1 (2022). https://doi.org/10.1186/s40691-022-00305-9

    Article  Google Scholar 

  6. B.A. Lipsky, A.R. Berendt, P.B. Cornia, J.C. Pile, E.J.G. Peters, D.G. Armstrong, H.G. Deery, J.M. Embil, W.S. Joseph, A.W. Karchmer et al., Clin. Infect. Dis. 54, e132 (2012). https://doi.org/10.1093/cid/cis346

    Article  PubMed  Google Scholar 

  7. D. Bains, G. Singh, N. Kaur, N. Singh, ACS. Sustain Chem. Eng. 7, 969 (2019). https://doi.org/10.1021/acssuschemeng.8b04608

    Article  CAS  Google Scholar 

  8. K. Varaprasad, T. Jayaramudu, V. Kanikireddy, C. Toro, E.R. Sadiku, Carbohydr. Polym. 236, 116025 (2020). https://doi.org/10.1016/j.carbpol.2020.116025

    Article  CAS  PubMed  Google Scholar 

  9. R.C. Mundargi, V. Rangaswamy, T.M. Aminabhavi, J. Microencapsul. 28, 384 (2011). https://doi.org/10.3109/02652048.2011.576782

    Article  CAS  PubMed  Google Scholar 

  10. R. Jayakumar, M. Prabaharan, P.T. Sudheesh Kumar, S.V. Nair, H. Tamura, Biotechnol. Adv. 29, 322 (2011). https://doi.org/10.1016/j.biotechadv.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  11. O. Luneva, R. Olekhnovich, M. Uspenskaya, Polymers 14, 3135 (2022). https://doi.org/10.3390/polym14153135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. L.A. Camacho-Cruz, M.A. Velazco-Medel, H. Parra-Delgado, E. Bucio, Cellulose 28, 3279 (2021). https://doi.org/10.1007/s10570-021-03725-w

    Article  CAS  Google Scholar 

  13. S. Panawes, P. Ekabutr, P. Niamlang, P. Pavasant, P. Chuysinuan, J. Supaphol, J. Drug. Deliv. Sci. Technol. 41, 182 (2017). https://doi.org/10.1016/j.jddst.2017.06.021

    Article  CAS  Google Scholar 

  14. M. Abbasipour, M. Mirjalili, R. Khajavi, M.M. Majidi, J. Eng. Fiber. Fabr. 9, 155892501400900 (2014). https://doi.org/10.1177/155892501400900114

    Article  Google Scholar 

  15. R. Rimpy, M. Ahuja, Fibers Polym. 21, 1411 (2020). https://doi.org/10.1007/s12221-020-9856-1

    Article  CAS  Google Scholar 

  16. R.L. Skov, K.S. Jensen, J. Hosp. Infect. 73, 364 (2009). https://doi.org/10.1016/j.jhin.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  17. I. Popescu, A.I. Prisacaru, D.M. Suflet, G. Fundueanu, Polym. Bull. 71, 2863 (2014). https://doi.org/10.1007/s00289-014-1227-x

    Article  CAS  Google Scholar 

  18. G.G. Flores-Rojas, F. López-Saucedo, E. Vázquez, E. Hernández-Mecinas, L. Huerta, G. Cedillo, A. Concheiro, C. Alvarez-Lorenzo, E. Bucio, Cellulose 27, 2785 (2020). https://doi.org/10.1007/s10570-020-02986-1

    Article  CAS  Google Scholar 

  19. T. Guinovart, G. Valdés-Ramírez, J.R. Windmiller, F.J. Andrade, J. Wang, Electroanalysis 26, 1345 (2014). https://doi.org/10.1002/elan.201300558

    Article  CAS  Google Scholar 

  20. M. Feoktistova, P. Geserick, M. Leverkus, Cold Spring Harb. Protoc. (2016). https://doi.org/10.1101/pdb.prot087379

    Article  PubMed  Google Scholar 

  21. H.K. Can, J. Macromol. Sci. A. 53, 26 (2016). https://doi.org/10.1080/10601325.2016.1110454

    Article  CAS  Google Scholar 

  22. S. Kalam, S.A. Abu-Khamsin, M.S. Kamal, S. Patil, ACS Omega 6, 32342 (2021). https://doi.org/10.1021/acsomega.1c04661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. B. Özkahraman, I. Acar, G. Güçlü, Polym. Bull. 80, 1 (2022). https://doi.org/10.1007/S00289-022-04301-3

    Article  Google Scholar 

  24. J. Berthold, R.J.O. Olsson, L. Salmén, Cellulose 5, 281 (1998). https://doi.org/10.1023/A:1009298907734

    Article  CAS  Google Scholar 

  25. S.R. Nahra, M.P. Oliveira, E.F. de Macedo, C.R. Hurtado, D.B. Tada, L.M. Guerrini, E. Antonielli, G. de Almeida Ribeiro Oliveira, L.M. Lião, F.H. Cristovan, J. Appl. Polym. Sci. (2022). https://doi.org/10.1002/app.53006

    Article  Google Scholar 

  26. C.B.B. Luna, E. da Silva Barbosa, D.D. Siqueira Ferreira, E.A. dos Santos Filho, E.M. Araújo, Polym. Bull. 79, 7323 (2022). https://doi.org/10.1007/s00289-021-03856-x

    Article  CAS  Google Scholar 

  27. L. Dai, L.Y. Wang, T.Q. Yuan, J. He, Polym. Degrad. Stab. 99, 233 (2014). https://doi.org/10.1016/j.polymdegradstab.2013.10.024

    Article  CAS  Google Scholar 

  28. Y. Soudais, L. Moga, J. Blazek, F. Lemort, J. Anal. Appl. Pyrolysis 78, 46 (2007). https://doi.org/10.1016/j.jaap.2006.04.005

    Article  CAS  Google Scholar 

  29. P. Zhu, S. Sui, B. Wang, K. Sun, G. Sun, J. Anal. Appl. Pyrolysis 71, 645 (2004). https://doi.org/10.1016/j.jaap.2003.09.005

    Article  CAS  Google Scholar 

  30. J. Ambreen, F.F. Al-Harbi, H. Sakhawat, M. Ajmal, H. Naeem, Z.H. Farooqi, N. Batool, M. Siddiq, J. Mol. Liq. 355, 118931 (2022). https://doi.org/10.1016/j.molliq.2022.118931

    Article  CAS  Google Scholar 

  31. M.M. Feldstein, K.A. Bovaldinova, E.V. Bermesheva, A.P. Moscalets, E.E. Dormidontova, V.Y. Grinberg, A.R. Khokhlov, Macromolecules 47, 5759 (2014). https://doi.org/10.1021/ma501191k

    Article  ADS  CAS  Google Scholar 

  32. P. Kong, X. Chen, G. Xu, W. Wei, Polym. Eng. Sci. 61, 2567 (2021). https://doi.org/10.1002/pen.25783

    Article  CAS  Google Scholar 

  33. K. Ou, X. Wu, B. Wang, C. Meng, X. Dong, J. He, Cellulose 24, 5211 (2017). https://doi.org/10.1007/s10570-017-1449-9

    Article  CAS  Google Scholar 

  34. P. Gupta, R. Purwar, Iran. Polym. J. 30, 381 (2021). https://doi.org/10.1007/s13726-020-00897-3

    Article  CAS  Google Scholar 

  35. S.K. Einipour, M. Sadrjahani, A. Rezapour, Drug Deliv. Transl. Res. 12, 2778 (2022). https://doi.org/10.1007/s13346-022-01139-0

    Article  CAS  PubMed  Google Scholar 

  36. M. Rehan, S. Zaghloul, F.A. Mahmoud, A.S. Montaser, A. Hebeish, Mater. Sci. Eng. C 80, 29 (2017). https://doi.org/10.1016/j.msec.2017.05.093

    Article  CAS  Google Scholar 

  37. Y.A. Khan, K. Ozaltin, A. Bernal-Ballen, A. Di Martino, J. Drug. Deliv. Sci. Technol. 61, 102126 (2021). https://doi.org/10.1016/j.jddst.2020.102126

    Article  CAS  Google Scholar 

  38. J. Yoo, Y.Y. Won, ACS Biomater. Sci. Eng. 6, 6053 (2020). https://doi.org/10.1021/acsbiomaterials.0c01228

    Article  CAS  PubMed  Google Scholar 

  39. H.I. Meléndez-Ortiz, R. Betancourt-Galindo, B. Puente-Urbina, J.L. Sánchez-Orozco, A. Ledezma, Int. J. Biol. Macromol. 198, 119 (2022). https://doi.org/10.1016/j.ijbiomac.2021.12.083

    Article  CAS  PubMed  Google Scholar 

  40. C. López-Iglesias, J. Barros, I. Ardao, F.J. Monteiro, C. Alvarez-Lorenzo, J.L. Gómez-Amoza, C.A. García-González, Carbohydr. Polym. 204, 223 (2019). https://doi.org/10.1016/j.carbpol.2018.10.012

    Article  CAS  PubMed  Google Scholar 

  41. J. Zhang, C. Xiao, J. Wang, X. Zhuang, X. Chen, Chinese. J. Polym. Sci. 31, 1697 (2013). https://doi.org/10.1007/s10118-013-1358-9

    Article  CAS  Google Scholar 

  42. O.E. Akanbi, H.A. Njom, J. Fri, A.C. Otigbu, A.M. Clarke, Int. J. Environ. Res. Public Health 14, 1001 (2017). https://doi.org/10.3390/ijerph14091001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. M.J. Rybak, Clin. Infect. Dis. 42, S35 (2006). https://doi.org/10.1086/491712

    Article  CAS  PubMed  Google Scholar 

  44. Y. Shi, C. Zhang, F. Jiang, L. Cali, L. Ruan, H. Chen, Electrospun antimicrobial polymeric nanofibers in wound dressings, in Electrospun polymeric nanofibers. ed. by R. Jayakumar (Springer, Cham, 2022)

    Google Scholar 

  45. L. Cai, Y. Huang, Y. Duan, Q. Liu, Q. Xu, J. Jia, J. Wang, Q. Tong, P. Luo, Y. Wen, Nano Res. 14, 2735 (2021). https://doi.org/10.1007/s12274-020-3279-6

    Article  ADS  CAS  Google Scholar 

  46. Z.C. Wu, D.L. Boger, Acc. Chem. Res. 53, 2587 (2020). https://doi.org/10.1021/acs.accounts.0c00569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M. Talu, E. Uzluk, B. Yüksel, Macromol. Symp. 297, 188 (2010). https://doi.org/10.1002/masy.200900140

    Article  CAS  Google Scholar 

  48. M. Drouet, F. Chai, C. Barthélémy, G. Lebuffe, B. Debaene, B. Décaudin, P. Odou, Antimicrob. Agents Chemother. 59, 930 (2015). https://doi.org/10.1128/aac.03694-14

    Article  PubMed  PubMed Central  Google Scholar 

  49. J. Braun, S. Eckes, P.M. Rommens, K. Schmitzm, Antibiotics 9, 238 (2020). https://doi.org/10.3390/antibiotics9050238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. A.M. Philp, S. Raja, A. Philp, M.P. Newton, S.W. Jones, Spine 42, 202 (2017). https://doi.org/10.1097/brs.0000000000001712

    Article  PubMed  Google Scholar 

  51. T. Suchý, M. Šupová, P. Sauerová, M.H. Kalbáčová, E. Klapková, M. Pokorný, L. Horný, J. Závora, R. Ballay, F. Denk, Eur. J. Pharm. Biopharm. (2019). https://doi.org/10.1016/j.ejpb.2019.04.021

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CONACyT [Ciencia de Frontera 2019 6660] and COECyT [COAH-2022-C19-CO39]; H.I. Meléndez-Ortiz is particularly grateful to the program “Investigadoras e Investigadores por México” (CONAHCyT, Mexico). The authors also thank J.A. Mercado-Silva, C.N. Alvarado-Canche, and Laboratorio de análisis de cultivo celular del DMA de CIQA for their technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection and analysis were performed by R. Bentacourt-Galindo, H. Ivan Meléndez-Ortiz, B. Puente-Urbina, A. Ledezma, and R. Espinosa-Neira. J.C. Carrillo-Rodríguez wrote the first draft of the manuscript, and all authors commented on previous versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. C. Carrillo-Rodríguez.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betancourt-Galindo, R., Carrillo-Rodríguez, J.C., Meléndez-Ortiz, H.I. et al. Poly(N-vinyl caprolactam-co-maleic anhydride)-Grafted Cotton Gauze with Antimicrobial Properties for Their Potential Use as Wound Dressings. Fibers Polym 25, 933–943 (2024). https://doi.org/10.1007/s12221-024-00490-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-024-00490-y

Keywords

Navigation