Skip to main content
Log in

Rheological characteristics of nitrate glycerol ether cellulose gel based on phase separation in ternary system

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

By non-solvent-induced phase separation, nitrate glycerol ether cellulose (NGEC) gels were formed in ternary NGEC/acetone/ethanol system. The rheological behaviors of NGEC gels were investigated using dynamic rheological measurements. The final compositions and morphologies of NGEC gels were influenced by the initial solvent/non-solvent (acetone/ethanol) ratios and NGEC concentrations. In addition, the effect of initial acetone/ethanol ratios on the characteristics of NGEC gels is different from the effect of NGEC concentrations. The critical strain of NGEC gels decreased almost with increasing NGEC concentration of gels by increasing initial acetone ratio, but it increased with increasing NGEC concentration of gels by increasing NGEC concentration beyond a certain concentration in 2/3 (w/w) acetone/ethanol solution. For all gels, the storage modulus (G′) and loss modulus (G′′) of NGEC gels rapidly increased with increasing NGEC concentration of gels. In addition, the curves for G′ and G′′ were temperature sensitive throughout the entire temperature sweep, which implied that the interactions between NGEC/solvent could be disrupted upon heating to higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almdal K, Dyre J, Hvidt S, Kramer O (1993) Towards a phenomenological definition of the term ‘gel’. Polym Gel Netw 1(1):5–17

    Article  CAS  Google Scholar 

  • Appaw C, Gilbert RD, Khan SA (2007) Viscoelastic behavior of cellulose acetate in a mixed solvent system. Biomacromolecules 8(5):1541–1547. doi:10.1021/bm0611681

    Article  CAS  Google Scholar 

  • Appaw C, Gilbert RD, Khan SA, Kadla JF (2010) Phase separation and heat-induced gelation characteristics of cellulose acetate in a mixed solvent system. Cellulose 17(3):533–538. doi:10.1007/s10570-010-9406-x

    Article  CAS  Google Scholar 

  • Birinci E, Gevgilili H, Kalyon DM, Greenberg B, Fair DF, Perich A (2006) Rheological characterization of nitrocellulose gels. J Energy Mater 24(3):247–269. doi:10.1080/07370650600791262

    Article  CAS  Google Scholar 

  • Brock SL (2009) All-inorganic nanocrystal arrays. Angew Chem Int Ed 48(41):7484–7486. doi:10.1002/anie.200903989

    Article  CAS  Google Scholar 

  • Burchard W, Ross-Murphy S (1990) Physical networks: polymers and gels. Springer, NewYork

    Google Scholar 

  • Charani PR, Dehghani-Firouzabadi M, Afra E, Shakeri A (2013) Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 20(2):727–740. doi:10.1007/s10570-013-9862-1

  • Chen P, Yu H, Liu Y, Chen W, Wang X, Ouyang M (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20(1):149–157

    Article  CAS  Google Scholar 

  • ElKhatat AM, Al-Muhtaseb SA (2011) Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater 23(26):2887–2903. doi:10.1002/adma.201100283

    Article  CAS  Google Scholar 

  • Hao JH, Wang S (2001) Calculation of alcohol-acetone-cellulose acetate ternary phase diagram and their relevance to membrane formation. J Appl Polym Sci 80(10):1650–1657

    Article  CAS  Google Scholar 

  • Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12(8):1448–1453. doi:10.1039/c0gc00035c

    Article  CAS  Google Scholar 

  • Hong PD, Chou CM, Huang HT (2000) Phase separation behavior in polyvinyl alcohol/ethylene glycol/water ternary solutions. Eur Polym J 36(10):2193–2200. doi:10.1016/s0014-3057(99)00282-7

    Article  CAS  Google Scholar 

  • Hong SJ, Hong PD, Chen JC, Shih KS (2009) Effect of mixed solvent on solution properties and gelation behavior of poly(vinyl alcohol). Eur Polym J 45(4):1158–1168. doi:10.1016/j.eurpolymj.2009.01.005

    Article  CAS  Google Scholar 

  • Jin M, Luo Y (2013) Preparation and characterization of nitrocellulose aerogels. Chin J Explo Propellent 1:82–86

    Google Scholar 

  • Jullander I, Blom-Sallin BS (1948) Cross linking of nitrocellulose studied with the ultracentrifuge and consist meter. J Polym Sci 3(6):804–811

    Article  CAS  Google Scholar 

  • Kadla JF, Hsieh C-WC (2011) Effect of processing conditions on gel formation in ternary cellulose acetate systems. Cellulose 19(1):69–79. doi:10.1007/s10570-011-9625-9

    Article  Google Scholar 

  • Kadla JF, Korehei R (2010) Effect of hydrophilic and hydrophobic interactions on the rheological behavior and microstructure of a ternary cellulose acetate system. Biomacromolecules 11(4):1074–1081

    Article  CAS  Google Scholar 

  • Karppinen A, Vesterinen A-H, Saarinen T, Pietikäinen P, Seppälä J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18(6):1381–1390

    Article  CAS  Google Scholar 

  • Katoh K, Ito S, Kawaguchi S, Higashi E, Nakano K, Ogata Y, Wada Y (2010) Effect of heating rate on the thermal behavior of nitrocellulose. J Therm Anal Calorim 100(1):303–308. doi:10.1007/s10973-009-0478-5

    Article  CAS  Google Scholar 

  • Khalil SA (1973) Phase separation of cellulose derivatives: effects of polymer viscosity and dielectric constant of nonsolvent. J Pharm Sci 62(11):1883–1884. doi:10.1002/jps.2600621135

    Article  CAS  Google Scholar 

  • Li J, Brill TB (2006) Nanostructured energetic composites of CL-20 and binders synthesized by sol gel methods. Propellant Explo Pyrotech 31(1):61–69. doi:10.1002/prep.200600010

    Article  Google Scholar 

  • Li J, Lu Y, Yang D, Sun Q, Liu Y, Zhao H (2011) Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions. Biomacromolecules 12(5):1860–1867. doi:10.1021/bm200205z

    Article  CAS  Google Scholar 

  • Matsuyama H, Nishiguchi M, Kitamura Y (2000) Phase separation mechanism during membrane formation by dry-cast process. J Appl Polym Sci 77(4):776–783. doi:10.1002/(sici)1097-4628(20000725)77:4<776:aid-app9>3.0.co;2-q

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson P, Ikkala O (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  Google Scholar 

  • Peterson GR, Cychosz KA, Thommes M, Hope-Weeks LJ (2012) Solvent-tuned hierarchical porosity in nitrocellulose aerogels. Chem Commun 48(96):11754–11756. doi:10.1039/c2cc36071c

    Article  CAS  Google Scholar 

  • Pourmortazavi SM, Hosseini SG, Rahimi-Nasrabadi M, Hajimirsadeghi SS, Momenian H (2009) Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater 162(2–3):1141–1144. doi:10.1016/j.jhazmat.2008.05.161

    Article  CAS  Google Scholar 

  • Reuvers A, Altena F, Smolders C (1986) Demixing and gelation behavior of ternary cellulose acetate solutions. J Polym Sci Part B Polym Phys 24(4):793–804

    Article  CAS  Google Scholar 

  • Ross-Murphy SB (1994) Rheological characterization of polymer gels and networks. Polym Gel Netw 2(3):229–237

    Article  CAS  Google Scholar 

  • Shao ZQ, Wang WJ (2011) Structure and properties of cellulose nitrate. National Defense Industry Press, Beijing

  • Shao ZQ, Xu K, Hao HY, Wang JX (2003) One method for preparation of nitrate glycerol ether cellulose. CN Patent no. 1438248

  • Shao ZQ, Yang FF, Wang WJ, Wang FJ (2006) Research and development of the new generation high performance cellulose-based bonder. Chin J Explo Propellant 02:55–57

    Google Scholar 

  • Shih W-H, Shih WY, Kim S-I, Liu J, Aksay IA (1990) Scaling behavior of the elastic properties of colloidal gels. Phys Rev A 42(8):4772

    Article  CAS  Google Scholar 

  • Sim HG, Ahn KH, Lee SJ (2003) Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: a guideline for classification. J Nonnewton Fluid Mech 112(2):237–250

    Article  CAS  Google Scholar 

  • Swerin A, Powell R, Ödberg L (1992) Linear and nonlinear dynamic viscoelasticity of pulp fiber suspensions. Nordic Pulp and Paper Research Journal 7

  • Tappan BC, Brill TB (2003) Thermal decomposition of energetic materials 86. Cryogel synthesis of nanocrystalline CL-20 coated with cured nitrocellulose. Propellant Explo Pyrotech 28 (5):223–230. doi:10.1002/prep.200300009

  • Tappan BC, Steiner SA, Luther EP (2010) Nanoporous metal foams. Angew Chem Int Ed 49(27):4544–4565. doi:10.1002/anie.200902994

    Article  CAS  Google Scholar 

  • Vaessen DM, McCormick AV, Francis LF (2002) Effects of phase separation on stress development in polymeric coatings. Polymer 43(8):2267–2277. doi:10.1016/s0032-3861(02)00042-3

    Article  CAS  Google Scholar 

  • Wang FJ, Yang FF, Wang JN, Shao ZQ (2006) Preparation and performance of double base propellant modified by NGEC. Chin J Explo Propellant 06:51–53

    Google Scholar 

  • Yi JH, Zhao FQ, Xu SY, Zhang LY, Gao HX, Hu RZ (2009) Effects of pressure and TEGDN content on decomposition reaction mechanism and kinetics of DB gun propellant containing the mixed ester of TEGDN and NG. J Hazard Mater 165(1–3):853–859. doi:10.1016/j.jhazmat.2008.10.107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziqiang Shao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shao, Z., Gao, K. et al. Rheological characteristics of nitrate glycerol ether cellulose gel based on phase separation in ternary system. Cellulose 21, 4135–4143 (2014). https://doi.org/10.1007/s10570-014-0355-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0355-7

Keywords

Navigation