Skip to main content
Log in

Impacts of delignification and hot water pretreatment on the water induced cell wall swelling behavior of grasses and its relation to cellulolytic enzyme hydrolysis and binding

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The relationships between biomass composition, water retention value (WRV), settling volume and enzymatic glucose yield and enzyme binding is investigated in this work by employing grasses pretreated with combinations of alkaline hydrogen peroxide (AHP) delignification and liquid hot water pretreatment that result in significant alterations of cell wall properties and subsequent enzymatic hydrolysis yields. Specifically, these cell wall treatments are performed on corn stover and switchgrass to generate material with a range of lignin (6–35 %) and xylan (2–28 %) contents as well as a range of other properties such as carboxylic acid content, water binding affinity and swellability. It was determined that WRV and settling volume are predictors of glucose yield (R2 = 0.900 and 0.895 respectively) over the range of materials and treatment conditions used. It was also observed that mild AHP delignification can result in threefold increases in the WRV. Dynamic vapor sorption isotherms demonstrated that AHP-delignified corn stover exhibited an increased affinity for water sorption from the vapor phase relative to untreated corn stover. These results indicate that these water properties may be useful proxies for biomass susceptibility to enzymatic deconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aggebrandt LG, Samuelson O (1964) Penetration of water-soluble polymers into cellulose fibers. J Appl Polym Sci 8(6):2801–2812

    Article  CAS  Google Scholar 

  • Akin DE, Rigsby LL, Hanna WW, Lyon CE (1993) In vitro digestion and textural strength of rind and pith of normal and brown midrib stems. Animal Feed Sci Technol 43(3):303–314

    Article  Google Scholar 

  • Akinli-Kogak S (2001) The influence of fiber swelling on paper wetting. Dissertation, The University of Maine

  • Alince B, Robertson AA (1974) Aggregation of microcrystalline cellulose with polyethylenimine. Colloid Polym Sci 252(11):920–927

    Article  CAS  Google Scholar 

  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  CAS  Google Scholar 

  • Andreasson B, Forsström J, Wågberg L (2005) Determination of fibre pore structure: influence of salt, pH and conventional wet strength resins. Cellulose 12(3):253–265

    Article  CAS  Google Scholar 

  • Banerjee G, Car S, Scott-Craig JS, Hodge CB, Walton JD (2011) Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose. Biotechnol Biofuels 4:16

    Article  CAS  Google Scholar 

  • Berry SL, Roderick ML (2005) Plant–water relations and the fibre saturation point. New Phytol 168(1):25–37

    Article  CAS  Google Scholar 

  • Biliuta G, Fras L, Harabagiu V, Coseri S (2011) Mild oxidation of cellulose fibers using dioxygen as ultimate oxidizing agent. Dig J Nanomater Biostruct 6(1):291–297

    Google Scholar 

  • Boki K, Ohno S (1991) Moisture sorption hysteresis in kudzu starch and sweet-potato starch. J Food Sci 56(1):125–127

    Article  Google Scholar 

  • Cao Y, Tan HM (2004) Structural characterization of cellulose with enzymatic treatment. J Mol Struct 705(1–3):189–193

    Article  CAS  Google Scholar 

  • Ding S-Y, Liu Y-S, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338(6110):1055–1060

    Article  CAS  Google Scholar 

  • Engelund E, Thygesen L, Svensson S, Hill CS (2013) A critical discussion of the physics of wood–water interactions. Wood Sci Technol 47(1):141–161

    Article  CAS  Google Scholar 

  • Fahlén J, Salmén L (2004) Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6(1):433–438

    Article  Google Scholar 

  • Fardim P, Liebert T, Heinze T (2013) Pulp fibers for papermaking and cellulose dissolution. In: Navard P (ed) The European polysaccharide network of excellence (EPNOE). Springer, Heidelberg, pp 253–282

    Google Scholar 

  • Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 153(2):444–455

    Article  CAS  Google Scholar 

  • Gould JM (1985) Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotechnol Bioeng 27(3):225–231

    Article  CAS  Google Scholar 

  • Grabber JH, Hatfield RD, Ralph J (2003) Apoplastic pH and monolignol addition rate effects on lignin formation and cell wall degradability in maize. J Agric Food Chem 51(17):4984–4989

    Article  CAS  Google Scholar 

  • Grethlein HE (1985) The effect of pore-size distribution on the rate of enzymatic-hydrolysis of cellulosic substrates. Nat Biotechnol 3(2):155–160

    Article  CAS  Google Scholar 

  • Hatakeyama T, Nakamura K, Hatakeyama H (2000) Vaporization of bound water associated with cellulose fibres. Thermochim Acta 352:233–239

    Article  Google Scholar 

  • Helmerius J, von Walter JV, Rova U, Berglund KA, Hodge DB (2010) Impact of hemicellulose pre-extraction for bioconversion on birch Kraft pulp properties. Bioresour Technol 101(15):5996–6005

    Article  CAS  Google Scholar 

  • Hoeger I, Nair S, Ragauskas A, Deng Y, Rojas O, Zhu JY (2013) Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20(2):807–818

    Article  CAS  Google Scholar 

  • Hubbe MA, Heitmann JA (2007) Review of factors affecting the release of water from cellulosic fibers during paper manufacture. BioResources 2(3):500–533

    CAS  Google Scholar 

  • Igathinathane C, Womac A, Sokhansanj S, Pordesimo L (2005) Sorption equilibrium moisture characteristics of selected corn stover components. Trans ASABE 48(4):1449–1460

    Google Scholar 

  • Igathinathane C, Womac A, Sokhansanj S, Pordesimo L (2007) Moisture sorption thermodynamic properties of corn stover fractions. Trans ASABE 50:2151–2160

    Article  Google Scholar 

  • Ishizawa CI, Davis MF, Schell DF, Johnson DK (2007) Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover. J Agric Food Chem 55(7):2575–2581

    Article  CAS  Google Scholar 

  • Jenkins D, Richard MG, Daigger GT (2004) Manual on the causes and control of activated sludge bulking, foaming, and other solids separation problems. CRC Press, Boca Raton, FL

    Google Scholar 

  • Jones P, Schuler A (2012) Role of changing biomass density in process disruptions affecting biomass settling at a full-scale domestic wastewater treatment plant. J Environ Eng 138(1):67–73

    Article  CAS  Google Scholar 

  • Jones BW, Venditti R, Park S, Jameel H, Koo B (2013) Enhancement in enzymatic hydrolysis by mechanical refining for pretreated hardwood lignocellulosics. Bioresour Technol 147:353–360

    Article  CAS  Google Scholar 

  • Junior C, Milagres A, Ferraz A, Carvalho W (2013) The effects of lignin removal and drying on the porosity and enzymatic hydrolysis of sugarcane bagasse. Cellulose 20(6):3165–3177

    Google Scholar 

  • Karunanithy C, Muthukumarappan K, Donepudi A (2013) Moisture sorption characteristics of corn stover and big bluestem. J Renew Energy 2013:12

    Google Scholar 

  • Koo B-W, Treasure T, Jameel H, Phillips R, Chang H-m, Park S (2011) Reduction of enzyme dosage by oxygen delignification and mechanical refining for enzymatic hydrolysis of green liquor-pretreated hardwood. Appl Biochem Biotechnol 165(3–4):832–844

    Article  CAS  Google Scholar 

  • Kumar R, Wyman CE (2009) Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol Bioeng 103(2):252–267

    Article  CAS  Google Scholar 

  • Lam P, Sokhansanj S, Bi X, Lim C, Naimi L, Hoque M, Mani S, Womac A, Narayan S, Ye X (2008) Bulk density of wet and dry wheat straw and switchgrass particles. Appl Eng Agric 24(3):351–358

    Article  Google Scholar 

  • Lan TQ, Lou HM, Zhu JY (2013) Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.2–6.2. Bioenergy Res 6(2):476–485

    Article  CAS  Google Scholar 

  • Li M, Foster C, Pu Y, Holmes D, Saffron C, Ragauskas A, Hodge DB (2012) Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes. Biotechnol Biofuels 5(1):38

    Article  CAS  Google Scholar 

  • Liu CF, Xu F, Sun JX, Ren JL, Curling S, Sun RC, Fowler P, Baird MS (2006) Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne). Carbohydr Res 341(16):2677–2687

    Article  CAS  Google Scholar 

  • Lois-Correa J (2012) Depithers for efficient preparation of sugar cane bagasse fibers in pulp and paper industry. Ing Investig Technol 13(4):417–424

    Google Scholar 

  • Lojewska J, Miskowiec P, Lojewski T, Proniewicz LM (2005) Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Degrad Stab 88(3):512–520

    Article  CAS  Google Scholar 

  • Lund K, Sjöström K, Brelid H (2012) Alkali extraction of Kraft pulp fibers: influence on fiber and fluff pulp properties. J Eng Fibers Fabr 7(2):30–39

    CAS  Google Scholar 

  • Luo XL, Zhu JY (2011) Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzym Microb Technol 48(1):92–99

    Article  CAS  Google Scholar 

  • Luo XL, Zhu JY, Gleisner R, Zhan HY (2011) Effects of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses. Cellulose 18(4):1055–1062

    Article  CAS  Google Scholar 

  • Maloney TC, Laine JE, Paulapuro H (1999) Comments on the measurement of cell wall water. Tappi J 82(9):125–127

    CAS  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341(1):138–152

    Article  CAS  Google Scholar 

  • Nakagame S, Chandra RP, Kadla JF, Saddler JN (2011) Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol Bioeng 108(3):538–548

    Article  CAS  Google Scholar 

  • Nakamura K, Hatakeyama T, Hatakeyama H (1981) Studies on bound water of cellulose by differential scanning calorimetry. Text Res J 51(9):607–613

    Article  CAS  Google Scholar 

  • Nilsson D, Svennerstedt B, Wretfors C (2005) Adsorption equilibrium moisture contents of flax straw, hemp stalks and reed canary grass. Biosyst Eng 91(1):35–43

    Article  Google Scholar 

  • Olsson AM, Salmen L (2004) The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydr Res 339(4):813–818

    Article  CAS  Google Scholar 

  • O’Neil M, York WS (2003) The composition and structure of plant primary cell walls. In: Rose J (ed) The plant cell wall. Blackwell Pub Ltd, Oxford, pp 1–54

    Google Scholar 

  • Pan GX, Bolton JL, Leary GJ (1998) Determination of ferulic and p-coumaric acids in wheat straw and the amounts released by mild acid and alkaline peroxide treatment. J Agric Food Chem 46(12):5283–5288

    Article  CAS  Google Scholar 

  • Papadopoulos AN, Hill CAS, Gkaraveli A (2003) Determination of surface area and pore volume of holocellulose and chemically modified wood flour using the nitrogen adsorption technique. Holz als Roh Werkst 61:453–456

    Article  CAS  Google Scholar 

  • Pönni R, Vuorinen T, Kontturi E (2012) Proposed nano-scale coalescence of cellulose in chemical pulp fibers during technical treatments. BioResources 7(4):6077–6108

    Google Scholar 

  • Riedlberger P, Weuster-Botz D (2012) New miniature stirred-tank bioreactors for parallel study of enzymatic biomass hydrolysis. Bioresour Technol 106:138–146

    Article  CAS  Google Scholar 

  • Robert P, Marquis M, Barron C, Guillon F, Saulnier L (2005) FT-IR investigation of cell wall polysaccharides from cereal grains. Arabinoxylan infrared assignment. J Agric Food Chem 53(18):7014–7018

    Article  CAS  Google Scholar 

  • Roche CM, Dibble CJ, Knutsen JS, Stickel JJ, Liberatore MW (2009) Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings. Biotechnol Bioeng 104(2):290–300

    Article  CAS  Google Scholar 

  • Scallan AM (1983) The effect of acidic groups on the swelling of pulps: a review. Tappi J 72(11):157–162

    Google Scholar 

  • Scallan AM, Carles JE (1972) Correlation of water retention value with fiber saturation point. Sven Papperstid 75(17):699–703

    CAS  Google Scholar 

  • Scallan AM, Tigerström AC (1992) Swelling and elasticity of the cell walls of pulp fibers. J Pulp Paper Sci 18(5):J188–J193

    Google Scholar 

  • Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23(6):1333–1339

    Article  CAS  Google Scholar 

  • Selig M, Vinzant T, Himmel M, Decker S (2009) The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl Biochem Biotechnol 155(1–3):94–103

    Article  Google Scholar 

  • Selig M, Thygesen L, Johnson D, Himmel M, Felby C, Mittal A (2013) Hydration and saccharification of cellulose Iβ, II and III at increasing dry solids loadings. Biotechnol Lett 35(10):1599–1607

    Article  CAS  Google Scholar 

  • Sun XF, Sun RC, Su YQ, Sun JX (2004) Comparative study of crude and purified cellulose from wheat straw. J Agric Food Chem 52(4):839–847

    Article  CAS  Google Scholar 

  • Thompson DN, Chen H-C, Grethlein HE (1992) Comparison of pretreatment methods on the basis of available surface area. Bioresour Technol 39(2):155–163

    Article  CAS  Google Scholar 

  • Topgaard D, Söderman O (2001) Diffusion of water absorbed in cellulose fibers studied with 1H-NMR. Langmuir 17(9):2694–2702

    Article  CAS  Google Scholar 

  • Tu M, Pan X, Saddler JN (2009) Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. J Agric Food Chem 57(17):7771–7778

    Article  CAS  Google Scholar 

  • Wang QQ, He Z, Zhu Z, Zhang YHP, Ni Y, Luo XL, Zhu JY (2012) Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol Bioeng 109(2):381–389

    Article  CAS  Google Scholar 

  • Weber CW, Kohlhepp EA, Idouraine A, Ochoa LJ (1993) Binding-capacity of 18 fiber sources for calcium. J Agric Food Chem 41(11):1931–1935

    Article  CAS  Google Scholar 

  • Wei C-J, Cheng C-Y (1985) Effect of hydrogen peroxide pretreatment on the structural features and the enzymatic hydrolysis of rice straw. Biotechnol Bioeng 27(10):1418–1426

    Article  CAS  Google Scholar 

  • Wilson JR, Mertens DR, Hatfield RD (1993) Isolates of cell types from sorghum stems: digestion, cell wall and anatomical characteristics. J Sci Food Agric 63(4):407–417

    Article  Google Scholar 

  • Wrigstedt P, Kylli P, Pitkanen L, Nousiainen P, Tenkanen M, Sipila J (2010) Synthesis and antioxidant activity of hydroxycinnamic acid xylan esters. J Agric Food Chem 58(11):6937–6943

    Article  CAS  Google Scholar 

  • Yu Z, Jameel H, Chang H-m, Park S (2011) The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresour Technol 102(19):9083–9089

    Article  CAS  Google Scholar 

  • Zanutti MA (1997) Factors determining the quality of bagasse mechanical pulps. Cellul Chem Technol 31(5–6):381–390

    Google Scholar 

  • Zeng M, Ximenes E, Ladisch MR, Mosier NS, Vermerris W, Huang C-P, Sherman DM (2012) Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: enzymatic hydrolysis (part 1). Biotechnol Bioeng 109(2):390–397

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). The authors are grateful to Robert and Brady Carter at Decagon Devices (Pullman, WA, USA) for performing DVS on samples. Natasse Christides and Genevieve Gagnier provided laboratory assistance and were supported by an NSF Due Grant (#0757020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Hodge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, D.L., Hodge, D.B. Impacts of delignification and hot water pretreatment on the water induced cell wall swelling behavior of grasses and its relation to cellulolytic enzyme hydrolysis and binding. Cellulose 21, 221–235 (2014). https://doi.org/10.1007/s10570-013-0149-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0149-3

Keywords

Navigation