Skip to main content
Log in

Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This study demonstrates regioselective oxidation of cellulose nanowhiskers using 2.80–10.02 mmols of sodium periodate per 5 g of whiskers followed by grafting with methyl and butyl amines through a Schiff base reaction to obtain their amine derivatives in 80–90 % yield. We found a corresponding increase in carbonyl content (0.06–0.14 mmols/g) of the dialdehyde cellulose nanowhiskers with the increase in oxidant as measured by titrimetric analysis and this was further evidenced by FT-IR spectroscopy. Grafting of amine compounds to the oxidized cellulose nanowhiskers resulted in their amine derivatives, which are found to be partially soluble in DMSO. Therefore, the reduction reaction between amines and carbonyl groups was confirmed through 13C NMR spectra, which was also supported by copper titration, XPS, and FT-IR spectroscopy. Morphological integrity and crystallinity of the nanowhiskers was maintained after the chemical modification as studied by AFM and solid-state 13C NMR, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso D, Gimeno M, Olayo R, Vazquez-Torres H, Sepulveda-Sanchez JD, Shirai K (2009) Cross-linking chitosan into UV-irradiated cellulose fibers for the preparation of antimicrobial-finished textiles. Carbohydr Polym 77(3):536–543. doi:10.1016/j.carbpol.2009.01.027

    Article  CAS  Google Scholar 

  • Angellier H, Molina-Boisseau S, Belgacem MN, Dufresne A (2005) Surface chemical modification of waxy maize starch nanocrystals. Langmuir 21(6):2425–2433. doi:10.1021/la047530j

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21–27. doi:10.1021/la001070m

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626. doi:10.1021/bm0493685

    Article  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054. doi:10.1021/bm049300p

    Article  CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180. doi:10.1007/s10570-006-9061-4

    Article  CAS  Google Scholar 

  • Cassano R, Trombino S, Ferrarelli T, Muzzalupo R, Tavano L, Picci N (2009) Synthesis and antibacterial activity evaluation of a novel cotton fiber (Gossypium barbadense) ampicillin derivative. Carbohydr Polym 78(3):639–641. doi:10.1016/j.carbpol.2009.05.030

    Article  CAS  Google Scholar 

  • Cetin NS, Tingaut P, Ozmen N, Henry N, Harper D, Dadmun M, Sebe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9(10):997–1003. doi:10.1002/mabi.200900073

    Article  CAS  Google Scholar 

  • Dash R, Ragauskas AJ (2012) Synthesis of a novel cellulose nanowhisker-based drug delivery system. RSC Adv 2(8):3403–3409. doi:10.1039/c2ra01071b

    Article  CAS  Google Scholar 

  • Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Can J Chem 86(6):484–494. doi:10.1139/v07-152

    Article  CAS  Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315. doi:10.1039/c0sm00142b

    Article  CAS  Google Scholar 

  • El-Tahlawy KF, El-Bendary MA, Elhendawy AG, Hudson SM (2005) The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydr Polym 60(4):421–430. doi:10.1016/j.carbpol.2005.02.019

    Article  CAS  Google Scholar 

  • Fujisawa S, Saito T, Isogai A (2012) Nano-dispersion of TEMPO-oxidized cellulose/aliphatic amine salts in isopropyl alcohol. Cellulose 19(2):459–466. doi:10.1007/s10570-011-9648-2

    Article  CAS  Google Scholar 

  • Gousse C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651. doi:10.1016/s0032-3861(02)00051-4

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13(6):679–687. doi:10.1007/s10570-006-9075-y

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500. doi:10.1021/cr900339w

    Article  CAS  Google Scholar 

  • Harrisson S, Drisko GL, Malmstrom E, Hult A, Wooley KL (2011) Hybrid rigid/soft and biologic/synthetic materials: polymers grafted onto cellulose microcrystals. Biomacromolecules 12(4):1214–1223. doi:10.1021/bm101506j

    Article  CAS  Google Scholar 

  • Hasani M, Cranston ED, Gray DG (2009) Cationic surface functionalization of cellulose nanocrystals. Abstracts of Papers of the American Chemical Society 237

  • Huang JG, Ichinose I, Kunitake T (2006) Biomolecular modification of hierarchical cellulose fibers through titania nanocoating. Angew Chem Int Ed Engl 45(18):2883–2886. doi:10.1002/anie.200503867

    Article  CAS  Google Scholar 

  • John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364. doi:10.1016/j.carbpol.2007.05.040

    Article  CAS  Google Scholar 

  • Johnson R, Zink-Sharp A, Glasser W (2011) Preparation and characterization of hydrophobic derivatives of TEMPO-oxidized nanocelluloses. Cellulose 18(6):1599–1609. doi:10.1007/s10570-011-9579-y

    Article  CAS  Google Scholar 

  • Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1(3):488–492. doi:10.1021/bm0000337

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50(24):5438–5466. doi:10.1002/anie.201001273

    Article  CAS  Google Scholar 

  • Kristiansen KA, Potthast A, Christensen BE (2010) Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydr Res 345(10):1264–1271. doi:10.1016/j.carres.2010.02.011

    Article  CAS  Google Scholar 

  • Larsson PT, Hult EL, Wickholm K, Pettersson E, Iversen T (1999) CP/MAS C-13-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15(1):31–40. doi:10.1016/s0926-2040(99)00044-2

    Article  CAS  Google Scholar 

  • Lima MMD, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25(7):771–787. doi:10.1002/marc.200300268

    Article  Google Scholar 

  • Majoinen J, Walther A, McKee JR, Kontturi E, Aseyev V, Malho JM, Ruokolainen J, Ikkala O (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12(8):2997–3006. doi:10.1021/bm200613y

    Article  CAS  Google Scholar 

  • Montanari S, Rountani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38(5):1665–1671. doi:10.1021/ma048396c

    Article  CAS  Google Scholar 

  • Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286. doi:10.1021/la900452a

    Article  CAS  Google Scholar 

  • Nair KG, Dufresne A, Gandini A, Belgacem MN (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835–1842. doi:10.1021/bm030058g

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3. doi:10.1186/1754-6834-3-10

  • Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206. doi:10.1002/cjce.20554

    Article  CAS  Google Scholar 

  • Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11(3):674–681. doi:10.1021/bm901254n

    Article  CAS  Google Scholar 

  • Potthast A, Kostic M, Schiehser S, Kosma P, Rosenau T (2007) Studies on oxidative modifications of cellulose in the periodate system: molecular weight distribution and carbonyl group profiles. Holzforschung 61(6):662–667. doi:10.1515/hf.2007.099

    Article  CAS  Google Scholar 

  • Ringot C, Sol V, Barriere M, Saad N, Bressollier P, Granet R, Couleaud P, Frochot C, Krausz P (2011) Triazinyl porphyrin-based photoactive cotton fabrics: preparation, characterization, and antibacterial activity. Biomacromolecules 12(5):1716–1723. doi:10.1021/bm200082d

    Article  CAS  Google Scholar 

  • Rohrling J, Potthast A, Rosenau T, Lange T, Borgards A, Sixta H, Kosma P (2002) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 2. validation and applications. Biomacromolecules 3(5):969–975. doi:10.1021/bm020030p

    Article  Google Scholar 

  • Sassi JF, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2(2):111–127. doi:10.1007/bf00816384

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose Whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432. doi:10.1021/bm801193d

    Article  CAS  Google Scholar 

  • Yuan HH, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7(3):696–700. doi:10.1021/bm050828j

    Article  CAS  Google Scholar 

  • Zhang J, Jiang N, Dang Z, Elder TJ, Ragauskas AJ (2008) Oxidation and sulfonation of cellulosics. Cellulose 15(3):489–496. doi:10.1007/s10570-007-9193-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank DOE (DE-EE0003144) for the support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. Ragauskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dash, R., Elder, T. & Ragauskas, A.J. Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation. Cellulose 19, 2069–2079 (2012). https://doi.org/10.1007/s10570-012-9769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9769-2

Keywords

Navigation