Skip to main content
Log in

The role of the Ekenstam equation on the kinetics of cellulose hydrolytic degradation

  • LETTER TO THE EDITOR
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The meaning of the Ekenstam equation (1/DP − 1/DP°) = kt is shortly discussed. Several misleading statements about its application to cellulose hydrolysis are underlined in order to improve the reliability of kinetic analyses. To this end, some further simple analyses are suggested to the experimentalists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

DP°, DP:

Degree of polymerisation

k:

Rate constant of hydrolysis (mol g−1 t−1) for the Ekenstam equation; (t−1) for first-order kinetics

k1,0 :

Initial rate constant (Emsley and Stevens model)

k2 :

Rate constant of decrease of k1,0

LODP:

Levelling-off degree of polymerisation

M0:

Zero-order momentum of a Mw distribution

M1:

First-order momentum of a Mw distribution

Mw:

Molecular weight

n°:

Initial amount of scissile units

S:

Number of broken bonds (scissions)

Sn(0):

nth derivative of the function S(t) at t = 0

References

  • Calvini P (2005) The influence of levelling-off degree of polymerisation on the kinetics of cellulose degradation. Cellulose 12:445–447

    Article  CAS  Google Scholar 

  • Calvini P (2010) What went wrong with the kinetics of cellulose degradation? In: Lejeune A, Deprez T (eds) Cellulose: Structure and Properties. Derivatives and Industrial Uses. Nova Science Publishers, NY, pp 417–426

    Google Scholar 

  • Calvini P, Gorassini A (2006) On the rate of paper degradation: lessons (learned) from the past. Restaurator 27:275–290

    Article  CAS  Google Scholar 

  • Calvini P, Conio G, Princi E, Vicini S, Pedemonte E (2006) Viscometric determination of dialdehyde content in periodate oxycellulose Part II. Topochemistry of oxidation. Cellulose 13:571–579

    Article  CAS  Google Scholar 

  • Calvini P, Gorassini A, Merlani AL (2008) On the kinetics of cellulose degradation: looking beyond the pseudo zero order rate equation. Cellulose 15:193–203

    Article  CAS  Google Scholar 

  • Cheng Y, Brown KM, Prud’homme RK (2002) Preparation and characterization of molecular weight fractions of guar galactomannans using acid and enzymatic hydrolysis. Int J Biol Macromol 31:29–35

    Article  CAS  Google Scholar 

  • Dupont A-L, Mortha G (2004) Comparative evaluation of size-exclusion chromatography and viscometry for the characterisation of cellulose. J Chromatog A 1026:129–141

    Article  CAS  Google Scholar 

  • Emsley AM, Stevens GC (1994) Kinetics and mechanisms of the low-temperature degradation of cellulose. Cellulose 1:26–56

    Article  CAS  Google Scholar 

  • Emsley AM, Heywood RJ, Ali M, Eley CM (1997) On the kinetics of degradation of cellulose. Cellulose 4:1–5

    Article  CAS  Google Scholar 

  • Evans R, Wallis AFA (1989) Cellulose molecular weights determined by viscometry. J Appl Polym Sci 37:2331–2340

    Article  CAS  Google Scholar 

  • Feller RL, Lee SB, Bogaard J (1986) The kinetics of cellulose degradation. In: Needles HL, Zeronian SH (eds) Historic textile and paper materials: conservation and characterization. Adv Chem Ser 212, Am Chem Soc, Washington, DC, pp 329–346

  • Gehlen MH (2009) Approximate solution of the autocatalytic hydrolysis of cellulose. Cellulose 16:1069–1073

    Article  CAS  Google Scholar 

  • Gilbert R, Jalbert J, Tétreault P, Morin B, Denos Y (2009) Kinetics of the production of chain-end groups and methanol from the depolymerization of cellulose during the ageing of paper/oil systems. Part 1: Standard wood kraft insulation. Cellulose 16:327–338

    Article  CAS  Google Scholar 

  • Glaus MA, Van Loon R (2004) Cellulose degradation at alkaline conditions: long-term experiments at elevated temperatures. Nagra Tech Report 03–08:1–70

    Google Scholar 

  • Guaita M, Chiantore O, Luda MP (1990) Monte Carlo simulations of polymer degradations. 1. Degradations without volatilization. Macromolecules 23:2087–2092

    Article  CAS  Google Scholar 

  • Håkansson H, Ahlgren P (2005) Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material. Cellulose 12:177–183

    Article  Google Scholar 

  • Herdan G (1953) Fitting of polymer distributions of molecular weights by the method of moments. J Polym Sci 10(1):1–18

    Article  CAS  Google Scholar 

  • Hill DJT, Le TT, Darveniza M, Saha T (1996) A study of the degradation of cellulosic insulation materials in a power transformer. Part III. Degradation products of cellulose insulation paper. Polym Degrad Stab 51:211–218

    Article  CAS  Google Scholar 

  • Lauriol J-M, Comtat J, Froment P, Pla F, Robert A (1987) Molecular weight distribution of cellulose by on-line size exclusion chromatography—low angle laser light scattering. Holzforschung 41:165–169

    Article  CAS  Google Scholar 

  • Łojewski T, Zięba K, Knapik A, Bagniuk J, Lubańska A, Łojewska J (2010) Evaluating paper degradation progress. Cross-linking between chromatographic, spectroscopic and chemical results. Appl Phys A 100:809–821

    Article  Google Scholar 

  • Łojewski T, Zięba K, Kołodziej A, Łojewska J (2011) Following cellulose depolymerization in paper: comparison of size exclusion chromatography techniques. Cellulose 18:1349–1363

    Article  Google Scholar 

  • Marx-Figini M (1986) The acid-catalyzed degradation of cellulose in the range of medium and low degrees of polymerization. Makromol Chem 187:679–687

    Article  CAS  Google Scholar 

  • McShane CP, Rapp KJ, Corkran JL, Gauger GA, Luksich J (2002) Aging of Kraft paper in natural ester dielectric fluid. In: Proceedings of IEEE 2002 14th international conference on dielectric liquids (ICDL), Graz (Austra) July 7–12, pp 173–177

  • Montroll E (1941) Molecular size distributions and depolymerization reactions in polydisperse systems. J Am Chem Soc 63:1215–1220

    Article  CAS  Google Scholar 

  • Pavasars I, Hagberg J, Borén H, Allard B (2003) Alkaline degradation of cellulose: mechanisms and kinetics. J Polym Environment 11(2):39–47

    Article  CAS  Google Scholar 

  • Potthast A, Rosenau T, Kosma P (2006) Analysis of oxidized functionalities in cellulose. In: Klemm D (ed) Polysaccharides II, Adv Polym Sci 205, Springer, Berlin, pp 1–48

  • Potthast A, Kostic M, Schiehser S, Kosma P, Rosenau T (2007) Studies on oxidative modification of cellulose in the periodate system: Molecular weight distribution and carbonyl group profiles. Holzforschung 61:662–667

    Article  CAS  Google Scholar 

  • Potthast A, Schiehser S, Rosenau T, Kostic M (2009) Oxidative modifications of cellulose in the periodate system—Reduction and beta-elimination reactions. Holzforschung 63:12–17

    Article  CAS  Google Scholar 

  • Sawoszczuk T, Barański A, Łagan JM, Łojewski T, Zięba K (2008) On the use of ASTM closed vessel tests in accelerated ageing research. J Cult Herit 9:401–411

    Article  Google Scholar 

  • Schult T, Hjerde T, Optun OI, Kleppe PJ, Moe S (2002) Characterization of cellulose by SEC-MALLS. Cellulose 9:149–158

    Article  CAS  Google Scholar 

  • Sharples A (1971) Degradation of cellulose and its derivatives. A. Acid hydrolysis and alcoholysis. In: Bikales NH, Segal L (eds) Cellulose and cellulose derivatives Vol V pt V, 2nd edn. Wiley-Intescience, NY, pp 991–1006

    Google Scholar 

  • Stephens CH, Whitmore PM, Morris HR, Bier ME (2008) Hydrolysis of the amorphous cellulose in cotton-based paper. Biomacromolecules 9:1093–1099

    Article  CAS  Google Scholar 

  • Stol R, Pedersoli JL, Poppe H, Kok WTh (2002) Application of size exclusion electrochromatography to the microanalytical determination of the molecular mass distribution of celluloses from objects of cultural and historical value. Anal Chem 74:2314–2323

    Article  CAS  Google Scholar 

  • Whitmore PM, Bogaard J (1994) Determination of the cellulose scission route in the hydrolytic and oxidative degradation of paper. Restaurator 15: 26-45 http://www.cmu.edu/acrc/Publications/h%20and%20o%20degradation.pdf. Accessed 21 December 2011

  • Zervos S, Moropoulou A (2005) Cotton cellulose ageing in sealed vessels. Kinetic model of autocatalytic depolymerization. Cellulose 12:485–496

    Article  CAS  Google Scholar 

  • Zou X, Uesaka T, Gurnagul N (1996) Prediction of paper permanence by accelerated ageing I. Kinetic analysis of the aging process. Cellulose 3:243–267

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Calvini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvini, P. The role of the Ekenstam equation on the kinetics of cellulose hydrolytic degradation. Cellulose 19, 313–318 (2012). https://doi.org/10.1007/s10570-011-9645-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9645-5

Keywords

Navigation